UXWFBRYCNZIYOGP6MGMT5KGY6NFS566QDDJJZIP3YJODQI5QIHDAC AI26KKCYBXQDE6DUM6FWLFSSCTQ6QJCVHATZSCXZQCQIC2EZVAXQC 5H3MOKBPGSOSPZW2VIGCWZC5DUTTMJ7PYRERELC7ANHMNPGM3JEQC KN2H7F5CIEAKA5XQ4NQXAZV25VNZ6AV7Q3M2FVOX2JF7JKMDFDCAC LT2L5OITYEO7I6P5WA35E5FJ5AUGPMLFYYKPVI4WLBIH65AINECQC U3JHTSEMJLXNKOMAQJQPZKRW6GRPHYLG6DK53XVADIETKVCS2MFQC WN26XTZ7IZN4WNAVXZ4NKD4CXIU7IC6V7BFNVICNMQUVHBZXBNCAC O325HSUUTHFZ2BM23FLJVHZKYV742BLUWCDYSYDMIEAZRU6RRO7AC class testNNPV implements NeuralNetworkPolicyAndValue<int?, TicTacToePlayer> {@overridedouble getCurrentValue(GameState<int?, TicTacToePlayer> game) {// TODO: implement getCurrentValuethrow UnimplementedError();}@overrideMap<int?, double> getMoveProbabilities(GameState<int?, TicTacToePlayer?> game) {// pretend that the neural net thinks corner moves are good first movesif (game.getMoves().length == 9) {return <int?, double>{0: 0.25,1: 0,2: 0.25,3: 0,4: 0,5: 0,6: 0.25,7: 0,8: 0.25,};}return {};}}
test('visits neural net prescribed nodes more frequently', () {var o = TicTacToePlayer.O;var x = TicTacToePlayer.X;var e;var ttgg = TicTacToeGame(board: [e, e, e, e, e, e, e, e, e], currentPlayer: o, scores: {});MCTSResult<int?, TicTacToePlayer> result = MCTS(gameState: ttgg).getSimulationResult(iterations: 100, nnpv: testNNPV());expect(result.root!.children.length, equals(9));expect(result.maxDepth, equals(9));Map<int?, int> visits = {};result.root!.children.forEach((key, value) {visits[value.move] = value.visits;});print(visits);ttgg = TicTacToeGame(board: [e, e, e, e, e, e, e, e, e], currentPlayer: o, scores: {});result = MCTS(gameState: ttgg).getSimulationResult(iterations: 100);result.root!.children.forEach((key, value) {visits[value.move] = value.visits;});print(visits);});
return b.value.ucb1(player, maxScore).compareTo(a.value.ucb1(player, maxScore));
double bScore = b.value.ucb1(player, maxScore, _moveProbabilitiesFromNN[b.key] ?? 1.0);double aScore = a.value.ucb1(player, maxScore, _moveProbabilitiesFromNN[a.key] ?? 1.0);return bScore.compareTo(aScore);
MCTSResult<MoveType, PlayerType> getSimulationResult({Node<MoveType, PlayerType>? initialRootNode,int iterations = 100,double? maxSeconds,List<MoveType>? actualMoves}) {
MCTSResult<MoveType, PlayerType> getSimulationResult({Node<MoveType, PlayerType>? initialRootNode,int iterations = 100,double? maxSeconds,List<MoveType>? actualMoves,NeuralNetworkPolicyAndValue? nnpv,int? useValueAfterDepth,double? valueThreshold,}) {
gameState: gameState,parent: null,move: null,c: c,backpropObserver: backpropObserver);
gameState: gameState,parent: null,move: null,c: c,backpropObserver: backpropObserver,nnpv: nnpv,useValueAfterDepth: useValueAfterDepth,valueThreshold: valueThreshold,);
if (currentNode.useValueAfterDepth != null &¤tNode.depth >= currentNode.useValueAfterDepth!) {if (currentNode.nnpv!.getCurrentValue(currentNode.gameState!) >=currentNode.valueThreshold!) {currentNode.gameState!.winner =currentNode.gameState!.currentPlayer;} else {currentNode.gameState!.winner = null;}break t;}