//===-- SIInstrFormats.td - SI Instruction Encodings ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // SI Instruction format definitions. // //===----------------------------------------------------------------------===// class InstSI <dag outs, dag ins, string asm = "", list<dag> pattern = []> : AMDGPUInst<outs, ins, asm, pattern>, GCNPredicateControl { // Low bits - basic encoding information. field bit SALU = 0; field bit VALU = 0; // SALU instruction formats. field bit SOP1 = 0; field bit SOP2 = 0; field bit SOPC = 0; field bit SOPK = 0; field bit SOPP = 0; // VALU instruction formats. field bit VOP1 = 0; field bit VOP2 = 0; field bit VOPC = 0; field bit VOP3 = 0; field bit VOP3P = 0; field bit VINTRP = 0; field bit SDWA = 0; field bit DPP = 0; field bit TRANS = 0; // Memory instruction formats. field bit MUBUF = 0; field bit MTBUF = 0; field bit SMRD = 0; field bit MIMG = 0; field bit EXP = 0; field bit FLAT = 0; field bit DS = 0; // Pseudo instruction formats. field bit VGPRSpill = 0; field bit SGPRSpill = 0; // LDSDIR instruction format. field bit LDSDIR = 0; // VINTERP instruction format. field bit VINTERP = 0; // High bits - other information. field bit VM_CNT = 0; field bit EXP_CNT = 0; field bit LGKM_CNT = 0; // Whether WQM _must_ be enabled for this instruction. field bit WQM = 0; // Whether WQM _must_ be disabled for this instruction. field bit DisableWQM = 0; field bit Gather4 = 0; // Most sopk treat the immediate as a signed 16-bit, however some // use it as unsigned. field bit SOPKZext = 0; // This is an s_store_dword* instruction that requires a cache flush // on wave termination. It is necessary to distinguish from mayStore // SMEM instructions like the cache flush ones. field bit ScalarStore = 0; // Whether the operands can be ignored when computing the // instruction size. field bit FixedSize = 0; // This bit tells the assembler to use the 32-bit encoding in case it // is unable to infer the encoding from the operands. field bit VOPAsmPrefer32Bit = 0; // This bit indicates that this is a VOP3 opcode which supports op_sel // modifier. field bit VOP3_OPSEL = 0; // Is it possible for this instruction to be atomic? field bit maybeAtomic = 0; // This bit indicates that this is a VI instruction which is renamed // in GFX9. Required for correct mapping from pseudo to MC. field bit renamedInGFX9 = 0; // This bit indicates that this has a floating point result type, so // the clamp modifier has floating point semantics. field bit FPClamp = 0; // This bit indicates that instruction may support integer clamping // which depends on GPU features. field bit IntClamp = 0; // This field indicates that the clamp applies to the low component // of a packed output register. field bit ClampLo = 0; // This field indicates that the clamp applies to the high component // of a packed output register. field bit ClampHi = 0; // This bit indicates that this is a packed VOP3P instruction field bit IsPacked = 0; // This bit indicates that this is a D16 buffer instruction. field bit D16Buf = 0; // This field indicates that FLAT instruction accesses FLAT_GLBL segment. // Must be 0 for non-FLAT instructions. field bit FlatGlobal = 0; // Reads the mode register, usually for FP environment. field bit ReadsModeReg = 0; // This bit indicates that this uses the floating point double precision // rounding mode flags field bit FPDPRounding = 0; // Instruction is FP atomic. field bit FPAtomic = 0; // This bit indicates that this is one of MFMA instructions. field bit IsMAI = 0; // This bit indicates that this is one of DOT instructions. field bit IsDOT = 0; // This field indicates that FLAT instruction accesses FLAT_SCRATCH segment. // Must be 0 for non-FLAT instructions. field bit FlatScratch = 0; // Atomic without a return. field bit IsAtomicNoRet = 0; // Atomic with return. field bit IsAtomicRet = 0; // This bit indicates that this is one of WMMA instructions. field bit IsWMMA = 0; // These need to be kept in sync with the enum in SIInstrFlags. let TSFlags{0} = SALU; let TSFlags{1} = VALU; let TSFlags{2} = SOP1; let TSFlags{3} = SOP2; let TSFlags{4} = SOPC; let TSFlags{5} = SOPK; let TSFlags{6} = SOPP; let TSFlags{7} = VOP1; let TSFlags{8} = VOP2; let TSFlags{9} = VOPC; let TSFlags{10} = VOP3; let TSFlags{12} = VOP3P; let TSFlags{13} = VINTRP; let TSFlags{14} = SDWA; let TSFlags{15} = DPP; let TSFlags{16} = TRANS; let TSFlags{17} = MUBUF; let TSFlags{18} = MTBUF; let TSFlags{19} = SMRD; let TSFlags{20} = MIMG; let TSFlags{21} = EXP; let TSFlags{22} = FLAT; let TSFlags{23} = DS; let TSFlags{24} = VGPRSpill; let TSFlags{25} = SGPRSpill; let TSFlags{26} = LDSDIR; let TSFlags{27} = VINTERP; let TSFlags{32} = VM_CNT; let TSFlags{33} = EXP_CNT; let TSFlags{34} = LGKM_CNT; let TSFlags{35} = WQM; let TSFlags{36} = DisableWQM; let TSFlags{37} = Gather4; let TSFlags{38} = SOPKZext; let TSFlags{39} = ScalarStore; let TSFlags{40} = FixedSize; let TSFlags{41} = VOPAsmPrefer32Bit; let TSFlags{42} = VOP3_OPSEL; let TSFlags{43} = maybeAtomic; let TSFlags{44} = renamedInGFX9; let TSFlags{45} = FPClamp; let TSFlags{46} = IntClamp; let TSFlags{47} = ClampLo; let TSFlags{48} = ClampHi; let TSFlags{49} = IsPacked; let TSFlags{50} = D16Buf; let TSFlags{51} = FlatGlobal; let TSFlags{52} = FPDPRounding; let TSFlags{53} = FPAtomic; let TSFlags{54} = IsMAI; let TSFlags{55} = IsDOT; let TSFlags{56} = FlatScratch; let TSFlags{57} = IsAtomicNoRet; let TSFlags{58} = IsAtomicRet; let TSFlags{59} = IsWMMA; let SchedRW = [Write32Bit]; let AsmVariantName = AMDGPUAsmVariants.Default; // Avoid changing source registers in a way that violates constant bus read limitations. let hasExtraSrcRegAllocReq = !or(VOP1, VOP2, VOP3, VOPC, SDWA, VALU); } class PseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = ""> : InstSI<outs, ins, asm, pattern> { let isPseudo = 1; let isCodeGenOnly = 1; } class SPseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = ""> : PseudoInstSI<outs, ins, pattern, asm> { let SALU = 1; } class VPseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = ""> : PseudoInstSI<outs, ins, pattern, asm> { let VALU = 1; let Uses = [EXEC]; } class CFPseudoInstSI<dag outs, dag ins, list<dag> pattern = [], bit UseExec = 0, bit DefExec = 0> : SPseudoInstSI<outs, ins, pattern> { let Uses = !if(UseExec, [EXEC], []); let Defs = !if(DefExec, [EXEC, SCC], [SCC]); let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; } class Enc32 { field bits<32> Inst; int Size = 4; } class Enc64 { field bits<64> Inst; int Size = 8; } class Enc96 { field bits<96> Inst; int Size = 12; } def CPolBit { int GLC = 0; int SLC = 1; int DLC = 2; int SCC = 4; } class VOPDstOperand <RegisterClass rc> : RegisterOperand <rc, "printVOPDst">; class VINTRPe <bits<2> op> : Enc32 { bits<8> vdst; bits<8> vsrc; bits<2> attrchan; bits<6> attr; let Inst{7-0} = vsrc; let Inst{9-8} = attrchan; let Inst{15-10} = attr; let Inst{17-16} = op; let Inst{25-18} = vdst; let Inst{31-26} = 0x32; // encoding } class MIMGe_gfxpre11 : Enc64 { bits<10> vdata; bits<4> dmask; bits<1> unorm; bits<5> cpol; bits<1> r128; bits<1> tfe; bits<1> lwe; bit d16; bits<7> srsrc; bits<7> ssamp; let Inst{11-8} = dmask; let Inst{12} = unorm; let Inst{13} = cpol{CPolBit.GLC}; let Inst{15} = r128; let Inst{17} = lwe; let Inst{25} = cpol{CPolBit.SLC}; let Inst{31-26} = 0x3c; let Inst{47-40} = vdata{7-0}; let Inst{52-48} = srsrc{6-2}; let Inst{57-53} = ssamp{6-2}; let Inst{63} = d16; } class MIMGe_gfx6789 <bits<8> op> : MIMGe_gfxpre11 { bits<8> vaddr; bits<1> da; let Inst{0} = op{7}; let Inst{7} = cpol{CPolBit.SCC}; let Inst{14} = da; let Inst{16} = tfe; let Inst{24-18} = op{6-0}; let Inst{39-32} = vaddr; } class MIMGe_gfx90a <bits<8> op> : MIMGe_gfxpre11 { bits<8> vaddr; bits<1> da; let Inst{0} = op{7}; let Inst{7} = cpol{CPolBit.SCC}; let Inst{14} = da; let Inst{16} = vdata{9}; // ACC bit let Inst{24-18} = op{6-0}; let Inst{39-32} = vaddr; } class MIMGe_gfx10 <bits<8> op> : MIMGe_gfxpre11 { bits<8> vaddr0; bits<3> dim; bits<2> nsa; bits<1> a16; let Inst{0} = op{7}; let Inst{2-1} = nsa; let Inst{5-3} = dim; let Inst{7} = cpol{CPolBit.DLC}; let Inst{16} = tfe; let Inst{24-18} = op{6-0}; let Inst{39-32} = vaddr0; let Inst{62} = a16; } class MIMGe_gfx11 <bits<8> op> : Enc64 { bits<8> vdata; bits<4> dmask; bits<1> unorm; bits<5> cpol; bits<1> r128; bits<1> tfe; bits<1> lwe; bits<7> srsrc; bits<7> ssamp; bit d16; bits<1> a16; bits<8> vaddr0; bits<3> dim; bits<1> nsa; let Inst{0} = nsa; let Inst{4-2} = dim; let Inst{7} = unorm; let Inst{11-8} = dmask; let Inst{12} = cpol{CPolBit.SLC}; let Inst{13} = cpol{CPolBit.DLC}; let Inst{14} = cpol{CPolBit.GLC}; let Inst{15} = r128; let Inst{16} = a16; let Inst{17} = d16; let Inst{25-18} = op; let Inst{31-26} = 0x3c; let Inst{39-32} = vaddr0; let Inst{47-40} = vdata; let Inst{52-48} = srsrc{6-2}; let Inst{53} = tfe; let Inst{54} = lwe; let Inst{62-58} = ssamp{6-2}; } class EXPe : Enc64 { bits<4> en; bits<6> tgt; bits<1> done; bits<8> src0; bits<8> src1; bits<8> src2; bits<8> src3; let Inst{3-0} = en; let Inst{9-4} = tgt; let Inst{11} = done; let Inst{31-26} = 0x3e; let Inst{39-32} = src0; let Inst{47-40} = src1; let Inst{55-48} = src2; let Inst{63-56} = src3; } // Pre-GFX11 encoding has compr and vm bits. class EXPe_ComprVM : EXPe { bits<1> compr; bits<1> vm; let Inst{10} = compr; let Inst{12} = vm; } // GFX11+ encoding has row bit. class EXPe_Row : EXPe { bits<1> row; let Inst{13} = row; } let Uses = [EXEC] in { class VINTRPCommon <dag outs, dag ins, string asm, list<dag> pattern> : InstSI <outs, ins, asm, pattern> { let VINTRP = 1; // VINTRP instructions read parameter values from LDS, but these parameter // values are stored outside of the LDS memory that is allocated to the // shader for general purpose use. // // While it may be possible for ds_read/ds_write instructions to access // the parameter values in LDS, this would essentially be an out-of-bounds // memory access which we consider to be undefined behavior. // // So even though these instructions read memory, this memory is outside the // addressable memory space for the shader, and we consider these instructions // to be readnone. let mayLoad = 0; let mayStore = 0; let hasSideEffects = 0; let VALU = 1; } } // End Uses = [EXEC]