//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This pass exposes codegen information to IR-level passes. Every
/// transformation that uses codegen information is broken into three parts:
/// 1. The IR-level analysis pass.
/// 2. The IR-level transformation interface which provides the needed
/// information.
/// 3. Codegen-level implementation which uses target-specific hooks.
///
/// This file defines #2, which is the interface that IR-level transformations
/// use for querying the codegen.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/IR/FMF.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/InstructionCost.h"
#include <functional>
#include <utility>
namespace llvm {
namespace Intrinsic {
typedef unsigned ID;
}
class AssumptionCache;
class BlockFrequencyInfo;
class DominatorTree;
class BranchInst;
class CallBase;
class Function;
class GlobalValue;
class InstCombiner;
class OptimizationRemarkEmitter;
class IntrinsicInst;
class LoadInst;
class Loop;
class LoopInfo;
class LoopVectorizationLegality;
class ProfileSummaryInfo;
class RecurrenceDescriptor;
class SCEV;
class ScalarEvolution;
class StoreInst;
class SwitchInst;
class TargetLibraryInfo;
class Type;
class User;
class Value;
class VPIntrinsic;
struct KnownBits;
template <typename T> class Optional;
/// Information about a load/store intrinsic defined by the target.
struct MemIntrinsicInfo {
/// This is the pointer that the intrinsic is loading from or storing to.
/// If this is non-null, then analysis/optimization passes can assume that
/// this intrinsic is functionally equivalent to a load/store from this
/// pointer.
Value *PtrVal = nullptr;
// Ordering for atomic operations.
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
// Same Id is set by the target for corresponding load/store intrinsics.
unsigned short MatchingId = 0;
bool ReadMem = false;
bool WriteMem = false;
bool IsVolatile = false;
bool isUnordered() const {
return (Ordering == AtomicOrdering::NotAtomic ||
Ordering == AtomicOrdering::Unordered) &&
!IsVolatile;
}
};
/// Attributes of a target dependent hardware loop.
struct HardwareLoopInfo {
HardwareLoopInfo() = delete;
HardwareLoopInfo(Loop *L) : L(L) {}
Loop *L = nullptr;
BasicBlock *ExitBlock = nullptr;
BranchInst *ExitBranch = nullptr;
const SCEV *ExitCount = nullptr;
IntegerType *CountType = nullptr;
Value *LoopDecrement = nullptr; // Decrement the loop counter by this
// value in every iteration.
bool IsNestingLegal = false; // Can a hardware loop be a parent to
// another hardware loop?
bool CounterInReg = false; // Should loop counter be updated in
// the loop via a phi?
bool PerformEntryTest = false; // Generate the intrinsic which also performs
// icmp ne zero on the loop counter value and
// produces an i1 to guard the loop entry.
bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI,
DominatorTree &DT, bool ForceNestedLoop = false,
bool ForceHardwareLoopPHI = false);
bool canAnalyze(LoopInfo &LI);
};
class IntrinsicCostAttributes {
const IntrinsicInst *II = nullptr;
Type *RetTy = nullptr;
Intrinsic::ID IID;
SmallVector<Type *, 4> ParamTys;
SmallVector<const Value *, 4> Arguments;
FastMathFlags FMF;
// If ScalarizationCost is UINT_MAX, the cost of scalarizing the
// arguments and the return value will be computed based on types.
InstructionCost ScalarizationCost = InstructionCost::getInvalid();
public:
IntrinsicCostAttributes(
Intrinsic::ID Id, const CallBase &CI,
InstructionCost ScalarCost = InstructionCost::getInvalid(),
bool TypeBasedOnly = false);
IntrinsicCostAttributes(
Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
InstructionCost ScalarCost = InstructionCost::getInvalid());
IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
ArrayRef<const Value *> Args);
IntrinsicCostAttributes(
Intrinsic::ID Id, Type *RTy, ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys, FastMathFlags Flags = FastMathFlags(),
const IntrinsicInst *I = nullptr,
InstructionCost ScalarCost = InstructionCost::getInvalid());
Intrinsic::ID getID() const { return IID; }
const IntrinsicInst *getInst() const { return II; }
Type *getReturnType() const { return RetTy; }
FastMathFlags getFlags() const { return FMF; }
InstructionCost getScalarizationCost() const { return ScalarizationCost; }
const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
bool isTypeBasedOnly() const {
return Arguments.empty();
}
bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
};
enum class PredicationStyle { None, Data, DataAndControlFlow };
class TargetTransformInfo;
typedef TargetTransformInfo TTI;
/// This pass provides access to the codegen interfaces that are needed
/// for IR-level transformations.
class TargetTransformInfo {
public:
/// Construct a TTI object using a type implementing the \c Concept
/// API below.
///
/// This is used by targets to construct a TTI wrapping their target-specific
/// implementation that encodes appropriate costs for their target.
template <typename T> TargetTransformInfo(T Impl);
/// Construct a baseline TTI object using a minimal implementation of
/// the \c Concept API below.
///
/// The TTI implementation will reflect the information in the DataLayout
/// provided if non-null.
explicit TargetTransformInfo(const DataLayout &DL);
// Provide move semantics.
TargetTransformInfo(TargetTransformInfo &&Arg);
TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
// We need to define the destructor out-of-line to define our sub-classes
// out-of-line.
~TargetTransformInfo();
/// Handle the invalidation of this information.
///
/// When used as a result of \c TargetIRAnalysis this method will be called
/// when the function this was computed for changes. When it returns false,
/// the information is preserved across those changes.
bool invalidate(Function &, const PreservedAnalyses &,
FunctionAnalysisManager::Invalidator &) {
// FIXME: We should probably in some way ensure that the subtarget
// information for a function hasn't changed.
return false;
}
/// \name Generic Target Information
/// @{
/// The kind of cost model.
///
/// There are several different cost models that can be customized by the
/// target. The normalization of each cost model may be target specific.
enum TargetCostKind {
TCK_RecipThroughput, ///< Reciprocal throughput.
TCK_Latency, ///< The latency of instruction.
TCK_CodeSize, ///< Instruction code size.
TCK_SizeAndLatency ///< The weighted sum of size and latency.
};
/// Query the cost of a specified instruction.
///
/// Clients should use this interface to query the cost of an existing
/// instruction. The instruction must have a valid parent (basic block).
///
/// Note, this method does not cache the cost calculation and it
/// can be expensive in some cases.
InstructionCost getInstructionCost(const Instruction *I,
enum TargetCostKind kind) const {
InstructionCost Cost;
switch (kind) {
case TCK_RecipThroughput:
Cost = getInstructionThroughput(I);
break;
case TCK_Latency:
Cost = getInstructionLatency(I);
break;
case TCK_CodeSize:
case TCK_SizeAndLatency:
Cost = getUserCost(I, kind);
break;
}
return Cost;
}
/// Underlying constants for 'cost' values in this interface.
///
/// Many APIs in this interface return a cost. This enum defines the
/// fundamental values that should be used to interpret (and produce) those
/// costs. The costs are returned as an int rather than a member of this
/// enumeration because it is expected that the cost of one IR instruction
/// may have a multiplicative factor to it or otherwise won't fit directly
/// into the enum. Moreover, it is common to sum or average costs which works
/// better as simple integral values. Thus this enum only provides constants.
/// Also note that the returned costs are signed integers to make it natural
/// to add, subtract, and test with zero (a common boundary condition). It is
/// not expected that 2^32 is a realistic cost to be modeling at any point.
///
/// Note that these costs should usually reflect the intersection of code-size
/// cost and execution cost. A free instruction is typically one that folds
/// into another instruction. For example, reg-to-reg moves can often be
/// skipped by renaming the registers in the CPU, but they still are encoded
/// and thus wouldn't be considered 'free' here.
enum TargetCostConstants {
TCC_Free = 0, ///< Expected to fold away in lowering.
TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
};
/// Estimate the cost of a GEP operation when lowered.
InstructionCost
getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TargetCostKind CostKind = TCK_SizeAndLatency) const;
/// \returns A value by which our inlining threshold should be multiplied.
/// This is primarily used to bump up the inlining threshold wholesale on
/// targets where calls are unusually expensive.
///
/// TODO: This is a rather blunt instrument. Perhaps altering the costs of
/// individual classes of instructions would be better.
unsigned getInliningThresholdMultiplier() const;
/// \returns A value to be added to the inlining threshold.
unsigned adjustInliningThreshold(const CallBase *CB) const;
/// \returns Vector bonus in percent.
///
/// Vector bonuses: We want to more aggressively inline vector-dense kernels
/// and apply this bonus based on the percentage of vector instructions. A
/// bonus is applied if the vector instructions exceed 50% and half that
/// amount is applied if it exceeds 10%. Note that these bonuses are some what
/// arbitrary and evolved over time by accident as much as because they are
/// principled bonuses.
/// FIXME: It would be nice to base the bonus values on something more
/// scientific. A target may has no bonus on vector instructions.
int getInlinerVectorBonusPercent() const;
/// \return the expected cost of a memcpy, which could e.g. depend on the
/// source/destination type and alignment and the number of bytes copied.
InstructionCost getMemcpyCost(const Instruction *I) const;
/// \return The estimated number of case clusters when lowering \p 'SI'.
/// \p JTSize Set a jump table size only when \p SI is suitable for a jump
/// table.
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
unsigned &JTSize,
ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) const;
/// Estimate the cost of a given IR user when lowered.
///
/// This can estimate the cost of either a ConstantExpr or Instruction when
/// lowered.
///
/// \p Operands is a list of operands which can be a result of transformations
/// of the current operands. The number of the operands on the list must equal
/// to the number of the current operands the IR user has. Their order on the
/// list must be the same as the order of the current operands the IR user
/// has.
///
/// The returned cost is defined in terms of \c TargetCostConstants, see its
/// comments for a detailed explanation of the cost values.
InstructionCost getUserCost(const User *U, ArrayRef<const Value *> Operands,
TargetCostKind CostKind) const;
/// This is a helper function which calls the two-argument getUserCost
/// with \p Operands which are the current operands U has.
InstructionCost getUserCost(const User *U, TargetCostKind CostKind) const {
SmallVector<const Value *, 4> Operands(U->operand_values());
return getUserCost(U, Operands, CostKind);
}
/// If a branch or a select condition is skewed in one direction by more than
/// this factor, it is very likely to be predicted correctly.
BranchProbability getPredictableBranchThreshold() const;
/// Return true if branch divergence exists.
///
/// Branch divergence has a significantly negative impact on GPU performance
/// when threads in the same wavefront take different paths due to conditional
/// branches.
bool hasBranchDivergence() const;
/// Return true if the target prefers to use GPU divergence analysis to
/// replace the legacy version.
bool useGPUDivergenceAnalysis() const;
/// Returns whether V is a source of divergence.
///
/// This function provides the target-dependent information for
/// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis
/// first builds the dependency graph, and then runs the reachability
/// algorithm starting with the sources of divergence.
bool isSourceOfDivergence(const Value *V) const;
// Returns true for the target specific
// set of operations which produce uniform result
// even taking non-uniform arguments
bool isAlwaysUniform(const Value *V) const;
/// Returns the address space ID for a target's 'flat' address space. Note
/// this is not necessarily the same as addrspace(0), which LLVM sometimes
/// refers to as the generic address space. The flat address space is a
/// generic address space that can be used access multiple segments of memory
/// with different address spaces. Access of a memory location through a
/// pointer with this address space is expected to be legal but slower
/// compared to the same memory location accessed through a pointer with a
/// different address space.
//
/// This is for targets with different pointer representations which can
/// be converted with the addrspacecast instruction. If a pointer is converted
/// to this address space, optimizations should attempt to replace the access
/// with the source address space.
///
/// \returns ~0u if the target does not have such a flat address space to
/// optimize away.
unsigned getFlatAddressSpace() const;
/// Return any intrinsic address operand indexes which may be rewritten if
/// they use a flat address space pointer.
///
/// \returns true if the intrinsic was handled.
bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const;
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
/// Return true if globals in this address space can have initializers other
/// than `undef`.
bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const;
unsigned getAssumedAddrSpace(const Value *V) const;
std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value *V) const;
/// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
/// NewV, which has a different address space. This should happen for every
/// operand index that collectFlatAddressOperands returned for the intrinsic.
/// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
/// new value (which may be the original \p II with modified operands).
Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
Value *NewV) const;
/// Test whether calls to a function lower to actual program function
/// calls.
///
/// The idea is to test whether the program is likely to require a 'call'
/// instruction or equivalent in order to call the given function.
///
/// FIXME: It's not clear that this is a good or useful query API. Client's
/// should probably move to simpler cost metrics using the above.
/// Alternatively, we could split the cost interface into distinct code-size
/// and execution-speed costs. This would allow modelling the core of this
/// query more accurately as a call is a single small instruction, but
/// incurs significant execution cost.
bool isLoweredToCall(const Function *F) const;
struct LSRCost {
/// TODO: Some of these could be merged. Also, a lexical ordering
/// isn't always optimal.
unsigned Insns;
unsigned NumRegs;
unsigned AddRecCost;
unsigned NumIVMuls;
unsigned NumBaseAdds;
unsigned ImmCost;
unsigned SetupCost;
unsigned ScaleCost;
};
/// Parameters that control the generic loop unrolling transformation.
struct UnrollingPreferences {
/// The cost threshold for the unrolled loop. Should be relative to the
/// getUserCost values returned by this API, and the expectation is that
/// the unrolled loop's instructions when run through that interface should
/// not exceed this cost. However, this is only an estimate. Also, specific
/// loops may be unrolled even with a cost above this threshold if deemed
/// profitable. Set this to UINT_MAX to disable the loop body cost
/// restriction.
unsigned Threshold;
/// If complete unrolling will reduce the cost of the loop, we will boost
/// the Threshold by a certain percent to allow more aggressive complete
/// unrolling. This value provides the maximum boost percentage that we
/// can apply to Threshold (The value should be no less than 100).
/// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
/// MaxPercentThresholdBoost / 100)
/// E.g. if complete unrolling reduces the loop execution time by 50%
/// then we boost the threshold by the factor of 2x. If unrolling is not
/// expected to reduce the running time, then we do not increase the
/// threshold.
unsigned MaxPercentThresholdBoost;
/// The cost threshold for the unrolled loop when optimizing for size (set
/// to UINT_MAX to disable).
unsigned OptSizeThreshold;
/// The cost threshold for the unrolled loop, like Threshold, but used
/// for partial/runtime unrolling (set to UINT_MAX to disable).
unsigned PartialThreshold;
/// The cost threshold for the unrolled loop when optimizing for size, like
/// OptSizeThreshold, but used for partial/runtime unrolling (set to
/// UINT_MAX to disable).
unsigned PartialOptSizeThreshold;
/// A forced unrolling factor (the number of concatenated bodies of the
/// original loop in the unrolled loop body). When set to 0, the unrolling
/// transformation will select an unrolling factor based on the current cost
/// threshold and other factors.
unsigned Count;
/// Default unroll count for loops with run-time trip count.
unsigned DefaultUnrollRuntimeCount;
// Set the maximum unrolling factor. The unrolling factor may be selected
// using the appropriate cost threshold, but may not exceed this number
// (set to UINT_MAX to disable). This does not apply in cases where the
// loop is being fully unrolled.
unsigned MaxCount;
/// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
/// applies even if full unrolling is selected. This allows a target to fall
/// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
unsigned FullUnrollMaxCount;
// Represents number of instructions optimized when "back edge"
// becomes "fall through" in unrolled loop.
// For now we count a conditional branch on a backedge and a comparison
// feeding it.
unsigned BEInsns;
/// Allow partial unrolling (unrolling of loops to expand the size of the
/// loop body, not only to eliminate small constant-trip-count loops).
bool Partial;
/// Allow runtime unrolling (unrolling of loops to expand the size of the
/// loop body even when the number of loop iterations is not known at
/// compile time).
bool Runtime;
/// Allow generation of a loop remainder (extra iterations after unroll).
bool AllowRemainder;
/// Allow emitting expensive instructions (such as divisions) when computing
/// the trip count of a loop for runtime unrolling.
bool AllowExpensiveTripCount;
/// Apply loop unroll on any kind of loop
/// (mainly to loops that fail runtime unrolling).
bool Force;
/// Allow using trip count upper bound to unroll loops.
bool UpperBound;
/// Allow unrolling of all the iterations of the runtime loop remainder.
bool UnrollRemainder;
/// Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollAndJam;
/// Threshold for unroll and jam, for inner loop size. The 'Threshold'
/// value above is used during unroll and jam for the outer loop size.
/// This value is used in the same manner to limit the size of the inner
/// loop.
unsigned UnrollAndJamInnerLoopThreshold;
/// Don't allow loop unrolling to simulate more than this number of
/// iterations when checking full unroll profitability
unsigned MaxIterationsCountToAnalyze;
};
/// Get target-customized preferences for the generic loop unrolling
/// transformation. The caller will initialize UP with the current
/// target-independent defaults.
void getUnrollingPreferences(Loop *L, ScalarEvolution &,
UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) const;
/// Query the target whether it would be profitable to convert the given loop
/// into a hardware loop.
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *LibInfo,
HardwareLoopInfo &HWLoopInfo) const;
/// Query the target whether it would be prefered to create a predicated
/// vector loop, which can avoid the need to emit a scalar epilogue loop.
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *TLI,
DominatorTree *DT,
LoopVectorizationLegality *LVL) const;
/// Query the target whether lowering of the llvm.get.active.lane.mask
/// intrinsic is supported and how the mask should be used. A return value
/// of PredicationStyle::Data indicates the mask is used as data only,
/// whereas PredicationStyle::DataAndControlFlow indicates we should also use
/// the mask for control flow in the loop. If unsupported the return value is
/// PredicationStyle::None.
PredicationStyle emitGetActiveLaneMask() const;
// Parameters that control the loop peeling transformation
struct PeelingPreferences {
/// A forced peeling factor (the number of bodied of the original loop
/// that should be peeled off before the loop body). When set to 0, the
/// a peeling factor based on profile information and other factors.
unsigned PeelCount;
/// Allow peeling off loop iterations.
bool AllowPeeling;
/// Allow peeling off loop iterations for loop nests.
bool AllowLoopNestsPeeling;
/// Allow peeling basing on profile. Uses to enable peeling off all
/// iterations basing on provided profile.
/// If the value is true the peeling cost model can decide to peel only
/// some iterations and in this case it will set this to false.
bool PeelProfiledIterations;
};
/// Get target-customized preferences for the generic loop peeling
/// transformation. The caller will initialize \p PP with the current
/// target-independent defaults with information from \p L and \p SE.
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
PeelingPreferences &PP) const;
/// Targets can implement their own combinations for target-specific
/// intrinsics. This function will be called from the InstCombine pass every
/// time a target-specific intrinsic is encountered.
///
/// \returns None to not do anything target specific or a value that will be
/// returned from the InstCombiner. It is possible to return null and stop
/// further processing of the intrinsic by returning nullptr.
Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) const;
/// Can be used to implement target-specific instruction combining.
/// \see instCombineIntrinsic
Optional<Value *>
simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
APInt DemandedMask, KnownBits &Known,
bool &KnownBitsComputed) const;
/// Can be used to implement target-specific instruction combining.
/// \see instCombineIntrinsic
Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) const;
/// @}
/// \name Scalar Target Information
/// @{
/// Flags indicating the kind of support for population count.
///
/// Compared to the SW implementation, HW support is supposed to
/// significantly boost the performance when the population is dense, and it
/// may or may not degrade performance if the population is sparse. A HW
/// support is considered as "Fast" if it can outperform, or is on a par
/// with, SW implementation when the population is sparse; otherwise, it is
/// considered as "Slow".
enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
/// Return true if the specified immediate is legal add immediate, that
/// is the target has add instructions which can add a register with the
/// immediate without having to materialize the immediate into a register.
bool isLegalAddImmediate(int64_t Imm) const;
/// Return true if the specified immediate is legal icmp immediate,
/// that is the target has icmp instructions which can compare a register
/// against the immediate without having to materialize the immediate into a
/// register.
bool isLegalICmpImmediate(int64_t Imm) const;
/// Return true if the addressing mode represented by AM is legal for
/// this target, for a load/store of the specified type.
/// The type may be VoidTy, in which case only return true if the addressing
/// mode is legal for a load/store of any legal type.
/// If target returns true in LSRWithInstrQueries(), I may be valid.
/// TODO: Handle pre/postinc as well.
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace = 0,
Instruction *I = nullptr) const;
/// Return true if LSR cost of C1 is lower than C1.
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
const TargetTransformInfo::LSRCost &C2) const;
/// Return true if LSR major cost is number of registers. Targets which
/// implement their own isLSRCostLess and unset number of registers as major
/// cost should return false, otherwise return true.
bool isNumRegsMajorCostOfLSR() const;
/// \returns true if LSR should not optimize a chain that includes \p I.
bool isProfitableLSRChainElement(Instruction *I) const;
/// Return true if the target can fuse a compare and branch.
/// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
/// calculation for the instructions in a loop.
bool canMacroFuseCmp() const;
/// Return true if the target can save a compare for loop count, for example
/// hardware loop saves a compare.
bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *LibInfo) const;
enum AddressingModeKind {
AMK_PreIndexed,
AMK_PostIndexed,
AMK_None
};
/// Return the preferred addressing mode LSR should make efforts to generate.
AddressingModeKind getPreferredAddressingMode(const Loop *L,
ScalarEvolution *SE) const;
/// Return true if the target supports masked store.
bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
/// Return true if the target supports masked load.
bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
/// Return true if the target supports nontemporal store.
bool isLegalNTStore(Type *DataType, Align Alignment) const;
/// Return true if the target supports nontemporal load.
bool isLegalNTLoad(Type *DataType, Align Alignment) const;
/// \Returns true if the target supports broadcasting a load to a vector of
/// type <NumElements x ElementTy>.
bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const;
/// Return true if the target supports masked scatter.
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
/// Return true if the target supports masked gather.
bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
/// Return true if the target forces scalarizing of llvm.masked.gather
/// intrinsics.
bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const;
/// Return true if the target forces scalarizing of llvm.masked.scatter
/// intrinsics.
bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const;
/// Return true if the target supports masked compress store.
bool isLegalMaskedCompressStore(Type *DataType) const;
/// Return true if the target supports masked expand load.
bool isLegalMaskedExpandLoad(Type *DataType) const;
/// Return true if this is an alternating opcode pattern that can be lowered
/// to a single instruction on the target. In X86 this is for the addsub
/// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
/// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
/// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
/// when \p Opcode0 is selected and `1` when Opcode1 is selected.
/// \p VecTy is the vector type of the instruction to be generated.
bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
const SmallBitVector &OpcodeMask) const;
/// Return true if we should be enabling ordered reductions for the target.
bool enableOrderedReductions() const;
/// Return true if the target has a unified operation to calculate division
/// and remainder. If so, the additional implicit multiplication and
/// subtraction required to calculate a remainder from division are free. This
/// can enable more aggressive transformations for division and remainder than
/// would typically be allowed using throughput or size cost models.
bool hasDivRemOp(Type *DataType, bool IsSigned) const;
/// Return true if the given instruction (assumed to be a memory access
/// instruction) has a volatile variant. If that's the case then we can avoid
/// addrspacecast to generic AS for volatile loads/stores. Default
/// implementation returns false, which prevents address space inference for
/// volatile loads/stores.
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
/// Return true if target doesn't mind addresses in vectors.
bool prefersVectorizedAddressing() const;
/// Return the cost of the scaling factor used in the addressing
/// mode represented by AM for this target, for a load/store
/// of the specified type.
/// If the AM is supported, the return value must be >= 0.
/// If the AM is not supported, it returns a negative value.
/// TODO: Handle pre/postinc as well.
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale,
unsigned AddrSpace = 0) const;
/// Return true if the loop strength reduce pass should make
/// Instruction* based TTI queries to isLegalAddressingMode(). This is
/// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
/// immediate offset and no index register.
bool LSRWithInstrQueries() const;
/// Return true if it's free to truncate a value of type Ty1 to type
/// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
/// by referencing its sub-register AX.
bool isTruncateFree(Type *Ty1, Type *Ty2) const;
/// Return true if it is profitable to hoist instruction in the
/// then/else to before if.
bool isProfitableToHoist(Instruction *I) const;
bool useAA() const;
/// Return true if this type is legal.
bool isTypeLegal(Type *Ty) const;
/// Returns the estimated number of registers required to represent \p Ty.
unsigned getRegUsageForType(Type *Ty) const;
/// Return true if switches should be turned into lookup tables for the
/// target.
bool shouldBuildLookupTables() const;
/// Return true if switches should be turned into lookup tables
/// containing this constant value for the target.
bool shouldBuildLookupTablesForConstant(Constant *C) const;
/// Return true if lookup tables should be turned into relative lookup tables.
bool shouldBuildRelLookupTables() const;
/// Return true if the input function which is cold at all call sites,
/// should use coldcc calling convention.
bool useColdCCForColdCall(Function &F) const;
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
/// are set if the demanded result elements need to be inserted and/or
/// extracted from vectors.
InstructionCost getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert, bool Extract) const;
/// Estimate the overhead of scalarizing an instructions unique
/// non-constant operands. The (potentially vector) types to use for each of
/// argument are passes via Tys.
InstructionCost getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys) const;
/// If target has efficient vector element load/store instructions, it can
/// return true here so that insertion/extraction costs are not added to
/// the scalarization cost of a load/store.
bool supportsEfficientVectorElementLoadStore() const;
/// If the target supports tail calls.
bool supportsTailCalls() const;
/// Don't restrict interleaved unrolling to small loops.
bool enableAggressiveInterleaving(bool LoopHasReductions) const;
/// Returns options for expansion of memcmp. IsZeroCmp is
// true if this is the expansion of memcmp(p1, p2, s) == 0.
struct MemCmpExpansionOptions {
// Return true if memcmp expansion is enabled.
operator bool() const { return MaxNumLoads > 0; }
// Maximum number of load operations.
unsigned MaxNumLoads = 0;
// The list of available load sizes (in bytes), sorted in decreasing order.
SmallVector<unsigned, 8> LoadSizes;
// For memcmp expansion when the memcmp result is only compared equal or
// not-equal to 0, allow up to this number of load pairs per block. As an
// example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
// a0 = load2bytes &a[0]
// b0 = load2bytes &b[0]
// a2 = load1byte &a[2]
// b2 = load1byte &b[2]
// r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
unsigned NumLoadsPerBlock = 1;
// Set to true to allow overlapping loads. For example, 7-byte compares can
// be done with two 4-byte compares instead of 4+2+1-byte compares. This
// requires all loads in LoadSizes to be doable in an unaligned way.
bool AllowOverlappingLoads = false;
};
MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
bool IsZeroCmp) const;
/// Enable matching of interleaved access groups.
bool enableInterleavedAccessVectorization() const;
/// Enable matching of interleaved access groups that contain predicated
/// accesses or gaps and therefore vectorized using masked
/// vector loads/stores.
bool enableMaskedInterleavedAccessVectorization() const;
/// Indicate that it is potentially unsafe to automatically vectorize
/// floating-point operations because the semantics of vector and scalar
/// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
/// does not support IEEE-754 denormal numbers, while depending on the
/// platform, scalar floating-point math does.
/// This applies to floating-point math operations and calls, not memory
/// operations, shuffles, or casts.
bool isFPVectorizationPotentiallyUnsafe() const;
/// Determine if the target supports unaligned memory accesses.
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
unsigned AddressSpace = 0,
Align Alignment = Align(1),
bool *Fast = nullptr) const;
/// Return hardware support for population count.
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
/// Return true if the hardware has a fast square-root instruction.
bool haveFastSqrt(Type *Ty) const;
/// Return true if it is faster to check if a floating-point value is NaN
/// (or not-NaN) versus a comparison against a constant FP zero value.
/// Targets should override this if materializing a 0.0 for comparison is
/// generally as cheap as checking for ordered/unordered.
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
/// Return the expected cost of supporting the floating point operation
/// of the specified type.
InstructionCost getFPOpCost(Type *Ty) const;
/// Return the expected cost of materializing for the given integer
/// immediate of the specified type.
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
TargetCostKind CostKind) const;
/// Return the expected cost of materialization for the given integer
/// immediate of the specified type for a given instruction. The cost can be
/// zero if the immediate can be folded into the specified instruction.
InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind,
Instruction *Inst = nullptr) const;
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind) const;
/// Return the expected cost for the given integer when optimising
/// for size. This is different than the other integer immediate cost
/// functions in that it is subtarget agnostic. This is useful when you e.g.
/// target one ISA such as Aarch32 but smaller encodings could be possible
/// with another such as Thumb. This return value is used as a penalty when
/// the total costs for a constant is calculated (the bigger the cost, the
/// more beneficial constant hoisting is).
InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty) const;
/// @}
/// \name Vector Target Information
/// @{
/// The various kinds of shuffle patterns for vector queries.
enum ShuffleKind {
SK_Broadcast, ///< Broadcast element 0 to all other elements.
SK_Reverse, ///< Reverse the order of the vector.
SK_Select, ///< Selects elements from the corresponding lane of
///< either source operand. This is equivalent to a
///< vector select with a constant condition operand.
SK_Transpose, ///< Transpose two vectors.
SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
///< with any shuffle mask.
SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
///< shuffle mask.
SK_Splice ///< Concatenates elements from the first input vector
///< with elements of the second input vector. Returning
///< a vector of the same type as the input vectors.
};
/// Additional information about an operand's possible values.
enum OperandValueKind {
OK_AnyValue, // Operand can have any value.
OK_UniformValue, // Operand is uniform (splat of a value).
OK_UniformConstantValue, // Operand is uniform constant.
OK_NonUniformConstantValue // Operand is a non uniform constant value.
};
/// Additional properties of an operand's values.
enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
/// \return the number of registers in the target-provided register class.
unsigned getNumberOfRegisters(unsigned ClassID) const;
/// \return the target-provided register class ID for the provided type,
/// accounting for type promotion and other type-legalization techniques that
/// the target might apply. However, it specifically does not account for the
/// scalarization or splitting of vector types. Should a vector type require
/// scalarization or splitting into multiple underlying vector registers, that
/// type should be mapped to a register class containing no registers.
/// Specifically, this is designed to provide a simple, high-level view of the
/// register allocation later performed by the backend. These register classes
/// don't necessarily map onto the register classes used by the backend.
/// FIXME: It's not currently possible to determine how many registers
/// are used by the provided type.
unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
/// \return the target-provided register class name
const char *getRegisterClassName(unsigned ClassID) const;
enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector };
/// \return The width of the largest scalar or vector register type.
TypeSize getRegisterBitWidth(RegisterKind K) const;
/// \return The width of the smallest vector register type.
unsigned getMinVectorRegisterBitWidth() const;
/// \return The maximum value of vscale if the target specifies an
/// architectural maximum vector length, and None otherwise.
Optional<unsigned> getMaxVScale() const;
/// \return the value of vscale to tune the cost model for.
Optional<unsigned> getVScaleForTuning() const;
/// \return True if the vectorization factor should be chosen to
/// make the vector of the smallest element type match the size of a
/// vector register. For wider element types, this could result in
/// creating vectors that span multiple vector registers.
/// If false, the vectorization factor will be chosen based on the
/// size of the widest element type.
/// \p K Register Kind for vectorization.
bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;
/// \return The minimum vectorization factor for types of given element
/// bit width, or 0 if there is no minimum VF. The returned value only
/// applies when shouldMaximizeVectorBandwidth returns true.
/// If IsScalable is true, the returned ElementCount must be a scalable VF.
ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
/// \return The maximum vectorization factor for types of given element
/// bit width and opcode, or 0 if there is no maximum VF.
/// Currently only used by the SLP vectorizer.
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
/// \return The minimum vectorization factor for the store instruction. Given
/// the initial estimation of the minimum vector factor and store value type,
/// it tries to find possible lowest VF, which still might be profitable for
/// the vectorization.
/// \param VF Initial estimation of the minimum vector factor.
/// \param ScalarMemTy Scalar memory type of the store operation.
/// \param ScalarValTy Scalar type of the stored value.
/// Currently only used by the SLP vectorizer.
unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
Type *ScalarValTy) const;
/// \return True if it should be considered for address type promotion.
/// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
/// profitable without finding other extensions fed by the same input.
bool shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
/// \return The size of a cache line in bytes.
unsigned getCacheLineSize() const;
/// The possible cache levels
enum class CacheLevel {
L1D, // The L1 data cache
L2D, // The L2 data cache
// We currently do not model L3 caches, as their sizes differ widely between
// microarchitectures. Also, we currently do not have a use for L3 cache
// size modeling yet.
};
/// \return The size of the cache level in bytes, if available.
Optional<unsigned> getCacheSize(CacheLevel Level) const;
/// \return The associativity of the cache level, if available.
Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
/// \return How much before a load we should place the prefetch
/// instruction. This is currently measured in number of
/// instructions.
unsigned getPrefetchDistance() const;
/// Some HW prefetchers can handle accesses up to a certain constant stride.
/// Sometimes prefetching is beneficial even below the HW prefetcher limit,
/// and the arguments provided are meant to serve as a basis for deciding this
/// for a particular loop.
///
/// \param NumMemAccesses Number of memory accesses in the loop.
/// \param NumStridedMemAccesses Number of the memory accesses that
/// ScalarEvolution could find a known stride
/// for.
/// \param NumPrefetches Number of software prefetches that will be
/// emitted as determined by the addresses
/// involved and the cache line size.
/// \param HasCall True if the loop contains a call.
///
/// \return This is the minimum stride in bytes where it makes sense to start
/// adding SW prefetches. The default is 1, i.e. prefetch with any
/// stride.
unsigned getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches, bool HasCall) const;
/// \return The maximum number of iterations to prefetch ahead. If
/// the required number of iterations is more than this number, no
/// prefetching is performed.
unsigned getMaxPrefetchIterationsAhead() const;
/// \return True if prefetching should also be done for writes.
bool enableWritePrefetching() const;
/// \return The maximum interleave factor that any transform should try to
/// perform for this target. This number depends on the level of parallelism
/// and the number of execution units in the CPU.
unsigned getMaxInterleaveFactor(unsigned VF) const;
/// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
static OperandValueKind getOperandInfo(const Value *V,
OperandValueProperties &OpProps);
/// This is an approximation of reciprocal throughput of a math/logic op.
/// A higher cost indicates less expected throughput.
/// From Agner Fog's guides, reciprocal throughput is "the average number of
/// clock cycles per instruction when the instructions are not part of a
/// limiting dependency chain."
/// Therefore, costs should be scaled to account for multiple execution units
/// on the target that can process this type of instruction. For example, if
/// there are 5 scalar integer units and 2 vector integer units that can
/// calculate an 'add' in a single cycle, this model should indicate that the
/// cost of the vector add instruction is 2.5 times the cost of the scalar
/// add instruction.
/// \p Args is an optional argument which holds the instruction operands
/// values so the TTI can analyze those values searching for special
/// cases or optimizations based on those values.
/// \p CxtI is the optional original context instruction, if one exists, to
/// provide even more information.
InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
OperandValueKind Opd1Info = OK_AnyValue,
OperandValueKind Opd2Info = OK_AnyValue,
OperandValueProperties Opd1PropInfo = OP_None,
OperandValueProperties Opd2PropInfo = OP_None,
ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
const Instruction *CxtI = nullptr) const;
/// \return The cost of a shuffle instruction of kind Kind and of type Tp.
/// The exact mask may be passed as Mask, or else the array will be empty.
/// The index and subtype parameters are used by the subvector insertion and
/// extraction shuffle kinds to show the insert/extract point and the type of
/// the subvector being inserted/extracted. The operands of the shuffle can be
/// passed through \p Args, which helps improve the cost estimation in some
/// cases, like in broadcast loads.
/// NOTE: For subvector extractions Tp represents the source type.
InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
ArrayRef<int> Mask = None, int Index = 0,
VectorType *SubTp = nullptr,
ArrayRef<const Value *> Args = None) const;
/// Represents a hint about the context in which a cast is used.
///
/// For zext/sext, the context of the cast is the operand, which must be a
/// load of some kind. For trunc, the context is of the cast is the single
/// user of the instruction, which must be a store of some kind.
///
/// This enum allows the vectorizer to give getCastInstrCost an idea of the
/// type of cast it's dealing with, as not every cast is equal. For instance,
/// the zext of a load may be free, but the zext of an interleaving load can
//// be (very) expensive!
///
/// See \c getCastContextHint to compute a CastContextHint from a cast
/// Instruction*. Callers can use it if they don't need to override the
/// context and just want it to be calculated from the instruction.
///
/// FIXME: This handles the types of load/store that the vectorizer can
/// produce, which are the cases where the context instruction is most
/// likely to be incorrect. There are other situations where that can happen
/// too, which might be handled here but in the long run a more general
/// solution of costing multiple instructions at the same times may be better.
enum class CastContextHint : uint8_t {
None, ///< The cast is not used with a load/store of any kind.
Normal, ///< The cast is used with a normal load/store.
Masked, ///< The cast is used with a masked load/store.
GatherScatter, ///< The cast is used with a gather/scatter.
Interleave, ///< The cast is used with an interleaved load/store.
Reversed, ///< The cast is used with a reversed load/store.
};
/// Calculates a CastContextHint from \p I.
/// This should be used by callers of getCastInstrCost if they wish to
/// determine the context from some instruction.
/// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
/// or if it's another type of cast.
static CastContextHint getCastContextHint(const Instruction *I);
/// \return The expected cost of cast instructions, such as bitcast, trunc,
/// zext, etc. If there is an existing instruction that holds Opcode, it
/// may be passed in the 'I' parameter.
InstructionCost
getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
const Instruction *I = nullptr) const;
/// \return The expected cost of a sign- or zero-extended vector extract. Use
/// -1 to indicate that there is no information about the index value.
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index = -1) const;
/// \return The expected cost of control-flow related instructions such as
/// Phi, Ret, Br, Switch.
InstructionCost
getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
const Instruction *I = nullptr) const;
/// \returns The expected cost of compare and select instructions. If there
/// is an existing instruction that holds Opcode, it may be passed in the
/// 'I' parameter. The \p VecPred parameter can be used to indicate the select
/// is using a compare with the specified predicate as condition. When vector
/// types are passed, \p VecPred must be used for all lanes.
InstructionCost
getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
const Instruction *I = nullptr) const;
/// \return The expected cost of vector Insert and Extract.
/// Use -1 to indicate that there is no information on the index value.
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index = -1) const;
/// \return The cost of replication shuffle of \p VF elements typed \p EltTy
/// \p ReplicationFactor times.
///
/// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
/// <0,0,0,1,1,1,2,2,2,3,3,3>
InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
int VF,
const APInt &DemandedDstElts,
TTI::TargetCostKind CostKind);
/// \return The cost of Load and Store instructions.
InstructionCost
getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
const Instruction *I = nullptr) const;
/// \return The cost of VP Load and Store instructions.
InstructionCost
getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
const Instruction *I = nullptr) const;
/// \return The cost of masked Load and Store instructions.
InstructionCost getMaskedMemoryOpCost(
unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
/// \return The cost of Gather or Scatter operation
/// \p Opcode - is a type of memory access Load or Store
/// \p DataTy - a vector type of the data to be loaded or stored
/// \p Ptr - pointer [or vector of pointers] - address[es] in memory
/// \p VariableMask - true when the memory access is predicated with a mask
/// that is not a compile-time constant
/// \p Alignment - alignment of single element
/// \p I - the optional original context instruction, if one exists, e.g. the
/// load/store to transform or the call to the gather/scatter intrinsic
InstructionCost getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
const Instruction *I = nullptr) const;
/// \return The cost of the interleaved memory operation.
/// \p Opcode is the memory operation code
/// \p VecTy is the vector type of the interleaved access.
/// \p Factor is the interleave factor
/// \p Indices is the indices for interleaved load members (as interleaved
/// load allows gaps)
/// \p Alignment is the alignment of the memory operation
/// \p AddressSpace is address space of the pointer.
/// \p UseMaskForCond indicates if the memory access is predicated.
/// \p UseMaskForGaps indicates if gaps should be masked.
InstructionCost getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
/// A helper function to determine the type of reduction algorithm used
/// for a given \p Opcode and set of FastMathFlags \p FMF.
static bool requiresOrderedReduction(Optional<FastMathFlags> FMF) {
return FMF != None && !(*FMF).allowReassoc();
}
/// Calculate the cost of vector reduction intrinsics.
///
/// This is the cost of reducing the vector value of type \p Ty to a scalar
/// value using the operation denoted by \p Opcode. The FastMathFlags
/// parameter \p FMF indicates what type of reduction we are performing:
/// 1. Tree-wise. This is the typical 'fast' reduction performed that
/// involves successively splitting a vector into half and doing the
/// operation on the pair of halves until you have a scalar value. For
/// example:
/// (v0, v1, v2, v3)
/// ((v0+v2), (v1+v3), undef, undef)
/// ((v0+v2+v1+v3), undef, undef, undef)
/// This is the default behaviour for integer operations, whereas for
/// floating point we only do this if \p FMF indicates that
/// reassociation is allowed.
/// 2. Ordered. For a vector with N elements this involves performing N
/// operations in lane order, starting with an initial scalar value, i.e.
/// result = InitVal + v0
/// result = result + v1
/// result = result + v2
/// result = result + v3
/// This is only the case for FP operations and when reassociation is not
/// allowed.
///
InstructionCost getArithmeticReductionCost(
unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
InstructionCost getMinMaxReductionCost(
VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
/// Calculate the cost of an extended reduction pattern, similar to
/// getArithmeticReductionCost of an Add reduction with an extension and
/// optional multiply. This is the cost of as:
/// ResTy vecreduce.add(ext(Ty A)), or if IsMLA flag is set then:
/// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)). The reduction happens
/// on a VectorType with ResTy elements and Ty lanes.
InstructionCost getExtendedAddReductionCost(
bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
/// \returns The cost of Intrinsic instructions. Analyses the real arguments.
/// Three cases are handled: 1. scalar instruction 2. vector instruction
/// 3. scalar instruction which is to be vectorized.
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) const;
/// \returns The cost of Call instructions.
InstructionCost getCallInstrCost(
Function *F, Type *RetTy, ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const;
/// \returns The number of pieces into which the provided type must be
/// split during legalization. Zero is returned when the answer is unknown.
unsigned getNumberOfParts(Type *Tp) const;
/// \returns The cost of the address computation. For most targets this can be
/// merged into the instruction indexing mode. Some targets might want to
/// distinguish between address computation for memory operations on vector
/// types and scalar types. Such targets should override this function.
/// The 'SE' parameter holds pointer for the scalar evolution object which
/// is used in order to get the Ptr step value in case of constant stride.
/// The 'Ptr' parameter holds SCEV of the access pointer.
InstructionCost getAddressComputationCost(Type *Ty,
ScalarEvolution *SE = nullptr,
const SCEV *Ptr = nullptr) const;
/// \returns The cost, if any, of keeping values of the given types alive
/// over a callsite.
///
/// Some types may require the use of register classes that do not have
/// any callee-saved registers, so would require a spill and fill.
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
/// \returns True if the intrinsic is a supported memory intrinsic. Info
/// will contain additional information - whether the intrinsic may write
/// or read to memory, volatility and the pointer. Info is undefined
/// if false is returned.
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
/// \returns The maximum element size, in bytes, for an element
/// unordered-atomic memory intrinsic.
unsigned getAtomicMemIntrinsicMaxElementSize() const;
/// \returns A value which is the result of the given memory intrinsic. New
/// instructions may be created to extract the result from the given intrinsic
/// memory operation. Returns nullptr if the target cannot create a result
/// from the given intrinsic.
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) const;
/// \returns The type to use in a loop expansion of a memcpy call.
Type *
getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign,
Optional<uint32_t> AtomicElementSize = None) const;
/// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
/// \param RemainingBytes The number of bytes to copy.
///
/// Calculates the operand types to use when copying \p RemainingBytes of
/// memory, where source and destination alignments are \p SrcAlign and
/// \p DestAlign respectively.
void getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign,
Optional<uint32_t> AtomicCpySize = None) const;
/// \returns True if the two functions have compatible attributes for inlining
/// purposes.
bool areInlineCompatible(const Function *Caller,
const Function *Callee) const;
/// \returns True if the caller and callee agree on how \p Types will be
/// passed to or returned from the callee.
/// to the callee.
/// \param Types List of types to check.
bool areTypesABICompatible(const Function *Caller, const Function *Callee,
const ArrayRef<Type *> &Types) const;
/// The type of load/store indexing.
enum MemIndexedMode {
MIM_Unindexed, ///< No indexing.
MIM_PreInc, ///< Pre-incrementing.
MIM_PreDec, ///< Pre-decrementing.
MIM_PostInc, ///< Post-incrementing.
MIM_PostDec ///< Post-decrementing.
};
/// \returns True if the specified indexed load for the given type is legal.
bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
/// \returns True if the specified indexed store for the given type is legal.
bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
/// \returns The bitwidth of the largest vector type that should be used to
/// load/store in the given address space.
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
/// \returns True if the load instruction is legal to vectorize.
bool isLegalToVectorizeLoad(LoadInst *LI) const;
/// \returns True if the store instruction is legal to vectorize.
bool isLegalToVectorizeStore(StoreInst *SI) const;
/// \returns True if it is legal to vectorize the given load chain.
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const;
/// \returns True if it is legal to vectorize the given store chain.
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const;
/// \returns True if it is legal to vectorize the given reduction kind.
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
ElementCount VF) const;
/// \returns True if the given type is supported for scalable vectors
bool isElementTypeLegalForScalableVector(Type *Ty) const;
/// \returns The new vector factor value if the target doesn't support \p
/// SizeInBytes loads or has a better vector factor.
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const;
/// \returns The new vector factor value if the target doesn't support \p
/// SizeInBytes stores or has a better vector factor.
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const;
/// Flags describing the kind of vector reduction.
struct ReductionFlags {
ReductionFlags() = default;
bool IsMaxOp =
false; ///< If the op a min/max kind, true if it's a max operation.
bool IsSigned = false; ///< Whether the operation is a signed int reduction.
bool NoNaN =
false; ///< If op is an fp min/max, whether NaNs may be present.
};
/// \returns True if the target prefers reductions in loop.
bool preferInLoopReduction(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const;
/// \returns True if the target prefers reductions select kept in the loop
/// when tail folding. i.e.
/// loop:
/// p = phi (0, s)
/// a = add (p, x)
/// s = select (mask, a, p)
/// vecreduce.add(s)
///
/// As opposed to the normal scheme of p = phi (0, a) which allows the select
/// to be pulled out of the loop. If the select(.., add, ..) can be predicated
/// by the target, this can lead to cleaner code generation.
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const;
/// \returns True if the target wants to expand the given reduction intrinsic
/// into a shuffle sequence.
bool shouldExpandReduction(const IntrinsicInst *II) const;
/// \returns the size cost of rematerializing a GlobalValue address relative
/// to a stack reload.
unsigned getGISelRematGlobalCost() const;
/// \returns the lower bound of a trip count to decide on vectorization
/// while tail-folding.
unsigned getMinTripCountTailFoldingThreshold() const;
/// \returns True if the target supports scalable vectors.
bool supportsScalableVectors() const;
/// \return true when scalable vectorization is preferred.
bool enableScalableVectorization() const;
/// \name Vector Predication Information
/// @{
/// Whether the target supports the %evl parameter of VP intrinsic efficiently
/// in hardware, for the given opcode and type/alignment. (see LLVM Language
/// Reference - "Vector Predication Intrinsics").
/// Use of %evl is discouraged when that is not the case.
bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
Align Alignment) const;
struct VPLegalization {
enum VPTransform {
// keep the predicating parameter
Legal = 0,
// where legal, discard the predicate parameter
Discard = 1,
// transform into something else that is also predicating
Convert = 2
};
// How to transform the EVL parameter.
// Legal: keep the EVL parameter as it is.
// Discard: Ignore the EVL parameter where it is safe to do so.
// Convert: Fold the EVL into the mask parameter.
VPTransform EVLParamStrategy;
// How to transform the operator.
// Legal: The target supports this operator.
// Convert: Convert this to a non-VP operation.
// The 'Discard' strategy is invalid.
VPTransform OpStrategy;
bool shouldDoNothing() const {
return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
}
VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)
: EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {}
};
/// \returns How the target needs this vector-predicated operation to be
/// transformed.
VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const;
/// @}
/// @}
private:
/// Estimate the latency of specified instruction.
/// Returns 1 as the default value.
InstructionCost getInstructionLatency(const Instruction *I) const;
/// Returns the expected throughput cost of the instruction.
/// Returns -1 if the cost is unknown.
InstructionCost getInstructionThroughput(const Instruction *I) const;
/// The abstract base class used to type erase specific TTI
/// implementations.
class Concept;
/// The template model for the base class which wraps a concrete
/// implementation in a type erased interface.
template <typename T> class Model;
std::unique_ptr<Concept> TTIImpl;
};
class TargetTransformInfo::Concept {
public:
virtual ~Concept() = 0;
virtual const DataLayout &getDataLayout() const = 0;
virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TTI::TargetCostKind CostKind) = 0;
virtual unsigned getInliningThresholdMultiplier() = 0;
virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
virtual int getInlinerVectorBonusPercent() = 0;
virtual InstructionCost getMemcpyCost(const Instruction *I) = 0;
virtual unsigned
getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) = 0;
virtual InstructionCost getUserCost(const User *U,
ArrayRef<const Value *> Operands,
TargetCostKind CostKind) = 0;
virtual BranchProbability getPredictableBranchThreshold() = 0;
virtual bool hasBranchDivergence() = 0;
virtual bool useGPUDivergenceAnalysis() = 0;
virtual bool isSourceOfDivergence(const Value *V) = 0;
virtual bool isAlwaysUniform(const Value *V) = 0;
virtual unsigned getFlatAddressSpace() = 0;
virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const = 0;
virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
virtual bool
canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0;
virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
virtual std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value *V) const = 0;
virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
Value *OldV,
Value *NewV) const = 0;
virtual bool isLoweredToCall(const Function *F) = 0;
virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) = 0;
virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
PeelingPreferences &PP) = 0;
virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
AssumptionCache &AC,
TargetLibraryInfo *LibInfo,
HardwareLoopInfo &HWLoopInfo) = 0;
virtual bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI,
ScalarEvolution &SE,
AssumptionCache &AC,
TargetLibraryInfo *TLI,
DominatorTree *DT,
LoopVectorizationLegality *LVL) = 0;
virtual PredicationStyle emitGetActiveLaneMask() = 0;
virtual Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) = 0;
virtual Optional<Value *>
simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
APInt DemandedMask, KnownBits &Known,
bool &KnownBitsComputed) = 0;
virtual Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) = 0;
virtual bool isLegalAddImmediate(int64_t Imm) = 0;
virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale, unsigned AddrSpace,
Instruction *I) = 0;
virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
const TargetTransformInfo::LSRCost &C2) = 0;
virtual bool isNumRegsMajorCostOfLSR() = 0;
virtual bool isProfitableLSRChainElement(Instruction *I) = 0;
virtual bool canMacroFuseCmp() = 0;
virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *LibInfo) = 0;
virtual AddressingModeKind
getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0;
virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
virtual bool isLegalBroadcastLoad(Type *ElementTy,
ElementCount NumElements) const = 0;
virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
virtual bool forceScalarizeMaskedGather(VectorType *DataType,
Align Alignment) = 0;
virtual bool forceScalarizeMaskedScatter(VectorType *DataType,
Align Alignment) = 0;
virtual bool isLegalMaskedCompressStore(Type *DataType) = 0;
virtual bool isLegalMaskedExpandLoad(Type *DataType) = 0;
virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
unsigned Opcode1,
const SmallBitVector &OpcodeMask) const = 0;
virtual bool enableOrderedReductions() = 0;
virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
virtual bool prefersVectorizedAddressing() = 0;
virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
unsigned AddrSpace) = 0;
virtual bool LSRWithInstrQueries() = 0;
virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
virtual bool isProfitableToHoist(Instruction *I) = 0;
virtual bool useAA() = 0;
virtual bool isTypeLegal(Type *Ty) = 0;
virtual unsigned getRegUsageForType(Type *Ty) = 0;
virtual bool shouldBuildLookupTables() = 0;
virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
virtual bool shouldBuildRelLookupTables() = 0;
virtual bool useColdCCForColdCall(Function &F) = 0;
virtual InstructionCost getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert,
bool Extract) = 0;
virtual InstructionCost
getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys) = 0;
virtual bool supportsEfficientVectorElementLoadStore() = 0;
virtual bool supportsTailCalls() = 0;
virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
virtual MemCmpExpansionOptions
enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
virtual bool enableInterleavedAccessVectorization() = 0;
virtual bool enableMaskedInterleavedAccessVectorization() = 0;
virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
unsigned BitWidth,
unsigned AddressSpace,
Align Alignment,
bool *Fast) = 0;
virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
virtual bool haveFastSqrt(Type *Ty) = 0;
virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
virtual InstructionCost getFPOpCost(Type *Ty) = 0;
virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty) = 0;
virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
TargetCostKind CostKind) = 0;
virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind,
Instruction *Inst = nullptr) = 0;
virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind) = 0;
virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
virtual unsigned getRegisterClassForType(bool Vector,
Type *Ty = nullptr) const = 0;
virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0;
virtual unsigned getMinVectorRegisterBitWidth() const = 0;
virtual Optional<unsigned> getMaxVScale() const = 0;
virtual Optional<unsigned> getVScaleForTuning() const = 0;
virtual bool
shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0;
virtual ElementCount getMinimumVF(unsigned ElemWidth,
bool IsScalable) const = 0;
virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
Type *ScalarValTy) const = 0;
virtual bool shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
virtual unsigned getCacheLineSize() const = 0;
virtual Optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
virtual Optional<unsigned> getCacheAssociativity(CacheLevel Level) const = 0;
/// \return How much before a load we should place the prefetch
/// instruction. This is currently measured in number of
/// instructions.
virtual unsigned getPrefetchDistance() const = 0;
/// \return Some HW prefetchers can handle accesses up to a certain
/// constant stride. This is the minimum stride in bytes where it
/// makes sense to start adding SW prefetches. The default is 1,
/// i.e. prefetch with any stride. Sometimes prefetching is beneficial
/// even below the HW prefetcher limit, and the arguments provided are
/// meant to serve as a basis for deciding this for a particular loop.
virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches,
bool HasCall) const = 0;
/// \return The maximum number of iterations to prefetch ahead. If
/// the required number of iterations is more than this number, no
/// prefetching is performed.
virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
/// \return True if prefetching should also be done for writes.
virtual bool enableWritePrefetching() const = 0;
virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
virtual InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
OperandValueKind Opd1Info, OperandValueKind Opd2Info,
OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0;
virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
ArrayRef<int> Mask, int Index,
VectorType *SubTp,
ArrayRef<const Value *> Args) = 0;
virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src, CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) = 0;
virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) = 0;
virtual InstructionCost getCFInstrCost(unsigned Opcode,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) = 0;
virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) = 0;
virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) = 0;
virtual InstructionCost
getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
const APInt &DemandedDstElts,
TTI::TargetCostKind CostKind) = 0;
virtual InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) = 0;
virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) = 0;
virtual InstructionCost
getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind) = 0;
virtual InstructionCost
getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
bool VariableMask, Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) = 0;
virtual InstructionCost getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
virtual InstructionCost
getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
Optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) = 0;
virtual InstructionCost
getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
TTI::TargetCostKind CostKind) = 0;
virtual InstructionCost getExtendedAddReductionCost(
bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0;
virtual InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) = 0;
virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) = 0;
virtual unsigned getNumberOfParts(Type *Tp) = 0;
virtual InstructionCost
getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0;
virtual InstructionCost
getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) = 0;
virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) = 0;
virtual Type *
getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign,
Optional<uint32_t> AtomicElementSize) const = 0;
virtual void getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign,
Optional<uint32_t> AtomicCpySize) const = 0;
virtual bool areInlineCompatible(const Function *Caller,
const Function *Callee) const = 0;
virtual bool areTypesABICompatible(const Function *Caller,
const Function *Callee,
const ArrayRef<Type *> &Types) const = 0;
virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const = 0;
virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const = 0;
virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
ElementCount VF) const = 0;
virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0;
virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const = 0;
virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const = 0;
virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
ReductionFlags) const = 0;
virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
ReductionFlags) const = 0;
virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
virtual unsigned getGISelRematGlobalCost() const = 0;
virtual unsigned getMinTripCountTailFoldingThreshold() const = 0;
virtual bool enableScalableVectorization() const = 0;
virtual bool supportsScalableVectors() const = 0;
virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
Align Alignment) const = 0;
virtual InstructionCost getInstructionLatency(const Instruction *I) = 0;
virtual VPLegalization
getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0;
};
template <typename T>
class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
T Impl;
public:
Model(T Impl) : Impl(std::move(Impl)) {}
~Model() override = default;
const DataLayout &getDataLayout() const override {
return Impl.getDataLayout();
}
InstructionCost
getGEPCost(Type *PointeeType, const Value *Ptr,
ArrayRef<const Value *> Operands,
TargetTransformInfo::TargetCostKind CostKind) override {
return Impl.getGEPCost(PointeeType, Ptr, Operands, CostKind);
}
unsigned getInliningThresholdMultiplier() override {
return Impl.getInliningThresholdMultiplier();
}
unsigned adjustInliningThreshold(const CallBase *CB) override {
return Impl.adjustInliningThreshold(CB);
}
int getInlinerVectorBonusPercent() override {
return Impl.getInlinerVectorBonusPercent();
}
InstructionCost getMemcpyCost(const Instruction *I) override {
return Impl.getMemcpyCost(I);
}
InstructionCost getUserCost(const User *U, ArrayRef<const Value *> Operands,
TargetCostKind CostKind) override {
return Impl.getUserCost(U, Operands, CostKind);
}
BranchProbability getPredictableBranchThreshold() override {
return Impl.getPredictableBranchThreshold();
}
bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
bool useGPUDivergenceAnalysis() override {
return Impl.useGPUDivergenceAnalysis();
}
bool isSourceOfDivergence(const Value *V) override {
return Impl.isSourceOfDivergence(V);
}
bool isAlwaysUniform(const Value *V) override {
return Impl.isAlwaysUniform(V);
}
unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const override {
return Impl.collectFlatAddressOperands(OpIndexes, IID);
}
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
}
bool
canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override {
return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS);
}
unsigned getAssumedAddrSpace(const Value *V) const override {
return Impl.getAssumedAddrSpace(V);
}
std::pair<const Value *, unsigned>
getPredicatedAddrSpace(const Value *V) const override {
return Impl.getPredicatedAddrSpace(V);
}
Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
Value *NewV) const override {
return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
}
bool isLoweredToCall(const Function *F) override {
return Impl.isLoweredToCall(F);
}
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) override {
return Impl.getUnrollingPreferences(L, SE, UP, ORE);
}
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
PeelingPreferences &PP) override {
return Impl.getPeelingPreferences(L, SE, PP);
}
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *LibInfo,
HardwareLoopInfo &HWLoopInfo) override {
return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
}
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
AssumptionCache &AC, TargetLibraryInfo *TLI,
DominatorTree *DT,
LoopVectorizationLegality *LVL) override {
return Impl.preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL);
}
PredicationStyle emitGetActiveLaneMask() override {
return Impl.emitGetActiveLaneMask();
}
Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
IntrinsicInst &II) override {
return Impl.instCombineIntrinsic(IC, II);
}
Optional<Value *>
simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
APInt DemandedMask, KnownBits &Known,
bool &KnownBitsComputed) override {
return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
KnownBitsComputed);
}
Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
APInt &UndefElts2, APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) override {
return Impl.simplifyDemandedVectorEltsIntrinsic(
IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
SimplifyAndSetOp);
}
bool isLegalAddImmediate(int64_t Imm) override {
return Impl.isLegalAddImmediate(Imm);
}
bool isLegalICmpImmediate(int64_t Imm) override {
return Impl.isLegalICmpImmediate(Imm);
}
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
Instruction *I) override {
return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
AddrSpace, I);
}
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
const TargetTransformInfo::LSRCost &C2) override {
return Impl.isLSRCostLess(C1, C2);
}
bool isNumRegsMajorCostOfLSR() override {
return Impl.isNumRegsMajorCostOfLSR();
}
bool isProfitableLSRChainElement(Instruction *I) override {
return Impl.isProfitableLSRChainElement(I);
}
bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *LibInfo) override {
return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
}
AddressingModeKind
getPreferredAddressingMode(const Loop *L,
ScalarEvolution *SE) const override {
return Impl.getPreferredAddressingMode(L, SE);
}
bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
return Impl.isLegalMaskedStore(DataType, Alignment);
}
bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
return Impl.isLegalMaskedLoad(DataType, Alignment);
}
bool isLegalNTStore(Type *DataType, Align Alignment) override {
return Impl.isLegalNTStore(DataType, Alignment);
}
bool isLegalNTLoad(Type *DataType, Align Alignment) override {
return Impl.isLegalNTLoad(DataType, Alignment);
}
bool isLegalBroadcastLoad(Type *ElementTy,
ElementCount NumElements) const override {
return Impl.isLegalBroadcastLoad(ElementTy, NumElements);
}
bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
return Impl.isLegalMaskedScatter(DataType, Alignment);
}
bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
return Impl.isLegalMaskedGather(DataType, Alignment);
}
bool forceScalarizeMaskedGather(VectorType *DataType,
Align Alignment) override {
return Impl.forceScalarizeMaskedGather(DataType, Alignment);
}
bool forceScalarizeMaskedScatter(VectorType *DataType,
Align Alignment) override {
return Impl.forceScalarizeMaskedScatter(DataType, Alignment);
}
bool isLegalMaskedCompressStore(Type *DataType) override {
return Impl.isLegalMaskedCompressStore(DataType);
}
bool isLegalMaskedExpandLoad(Type *DataType) override {
return Impl.isLegalMaskedExpandLoad(DataType);
}
bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
const SmallBitVector &OpcodeMask) const override {
return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
}
bool enableOrderedReductions() override {
return Impl.enableOrderedReductions();
}
bool hasDivRemOp(Type *DataType, bool IsSigned) override {
return Impl.hasDivRemOp(DataType, IsSigned);
}
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
return Impl.hasVolatileVariant(I, AddrSpace);
}
bool prefersVectorizedAddressing() override {
return Impl.prefersVectorizedAddressing();
}
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale,
unsigned AddrSpace) override {
return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
AddrSpace);
}
bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
bool isTruncateFree(Type *Ty1, Type *Ty2) override {
return Impl.isTruncateFree(Ty1, Ty2);
}
bool isProfitableToHoist(Instruction *I) override {
return Impl.isProfitableToHoist(I);
}
bool useAA() override { return Impl.useAA(); }
bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
unsigned getRegUsageForType(Type *Ty) override {
return Impl.getRegUsageForType(Ty);
}
bool shouldBuildLookupTables() override {
return Impl.shouldBuildLookupTables();
}
bool shouldBuildLookupTablesForConstant(Constant *C) override {
return Impl.shouldBuildLookupTablesForConstant(C);
}
bool shouldBuildRelLookupTables() override {
return Impl.shouldBuildRelLookupTables();
}
bool useColdCCForColdCall(Function &F) override {
return Impl.useColdCCForColdCall(F);
}
InstructionCost getScalarizationOverhead(VectorType *Ty,
const APInt &DemandedElts,
bool Insert, bool Extract) override {
return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
}
InstructionCost
getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
ArrayRef<Type *> Tys) override {
return Impl.getOperandsScalarizationOverhead(Args, Tys);
}
bool supportsEfficientVectorElementLoadStore() override {
return Impl.supportsEfficientVectorElementLoadStore();
}
bool supportsTailCalls() override { return Impl.supportsTailCalls(); }
bool enableAggressiveInterleaving(bool LoopHasReductions) override {
return Impl.enableAggressiveInterleaving(LoopHasReductions);
}
MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
bool IsZeroCmp) const override {
return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
}
bool enableInterleavedAccessVectorization() override {
return Impl.enableInterleavedAccessVectorization();
}
bool enableMaskedInterleavedAccessVectorization() override {
return Impl.enableMaskedInterleavedAccessVectorization();
}
bool isFPVectorizationPotentiallyUnsafe() override {
return Impl.isFPVectorizationPotentiallyUnsafe();
}
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
unsigned AddressSpace, Align Alignment,
bool *Fast) override {
return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
Alignment, Fast);
}
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
return Impl.getPopcntSupport(IntTyWidthInBit);
}
bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
}
InstructionCost getFPOpCost(Type *Ty) override {
return Impl.getFPOpCost(Ty);
}
InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty) override {
return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
}
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
TargetCostKind CostKind) override {
return Impl.getIntImmCost(Imm, Ty, CostKind);
}
InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind,
Instruction *Inst = nullptr) override {
return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
}
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TargetCostKind CostKind) override {
return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
}
unsigned getNumberOfRegisters(unsigned ClassID) const override {
return Impl.getNumberOfRegisters(ClassID);
}
unsigned getRegisterClassForType(bool Vector,
Type *Ty = nullptr) const override {
return Impl.getRegisterClassForType(Vector, Ty);
}
const char *getRegisterClassName(unsigned ClassID) const override {
return Impl.getRegisterClassName(ClassID);
}
TypeSize getRegisterBitWidth(RegisterKind K) const override {
return Impl.getRegisterBitWidth(K);
}
unsigned getMinVectorRegisterBitWidth() const override {
return Impl.getMinVectorRegisterBitWidth();
}
Optional<unsigned> getMaxVScale() const override {
return Impl.getMaxVScale();
}
Optional<unsigned> getVScaleForTuning() const override {
return Impl.getVScaleForTuning();
}
bool shouldMaximizeVectorBandwidth(
TargetTransformInfo::RegisterKind K) const override {
return Impl.shouldMaximizeVectorBandwidth(K);
}
ElementCount getMinimumVF(unsigned ElemWidth,
bool IsScalable) const override {
return Impl.getMinimumVF(ElemWidth, IsScalable);
}
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
return Impl.getMaximumVF(ElemWidth, Opcode);
}
unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
Type *ScalarValTy) const override {
return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
}
bool shouldConsiderAddressTypePromotion(
const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
return Impl.shouldConsiderAddressTypePromotion(
I, AllowPromotionWithoutCommonHeader);
}
unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
Optional<unsigned> getCacheSize(CacheLevel Level) const override {
return Impl.getCacheSize(Level);
}
Optional<unsigned> getCacheAssociativity(CacheLevel Level) const override {
return Impl.getCacheAssociativity(Level);
}
/// Return the preferred prefetch distance in terms of instructions.
///
unsigned getPrefetchDistance() const override {
return Impl.getPrefetchDistance();
}
/// Return the minimum stride necessary to trigger software
/// prefetching.
///
unsigned getMinPrefetchStride(unsigned NumMemAccesses,
unsigned NumStridedMemAccesses,
unsigned NumPrefetches,
bool HasCall) const override {
return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
NumPrefetches, HasCall);
}
/// Return the maximum prefetch distance in terms of loop
/// iterations.
///
unsigned getMaxPrefetchIterationsAhead() const override {
return Impl.getMaxPrefetchIterationsAhead();
}
/// \return True if prefetching should also be done for writes.
bool enableWritePrefetching() const override {
return Impl.enableWritePrefetching();
}
unsigned getMaxInterleaveFactor(unsigned VF) override {
return Impl.getMaxInterleaveFactor(VF);
}
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
unsigned &JTSize,
ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) override {
return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
}
InstructionCost getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
OperandValueKind Opd1Info, OperandValueKind Opd2Info,
OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
ArrayRef<const Value *> Args,
const Instruction *CxtI = nullptr) override {
return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
}
InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
ArrayRef<int> Mask, int Index,
VectorType *SubTp,
ArrayRef<const Value *> Args) override {
return Impl.getShuffleCost(Kind, Tp, Mask, Index, SubTp, Args);
}
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) override {
return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
VectorType *VecTy,
unsigned Index) override {
return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
}
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) override {
return Impl.getCFInstrCost(Opcode, CostKind, I);
}
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) override {
return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) override {
return Impl.getVectorInstrCost(Opcode, Val, Index);
}
InstructionCost
getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
const APInt &DemandedDstElts,
TTI::TargetCostKind CostKind) override {
return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
DemandedDstElts, CostKind);
}
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) override {
return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, I);
}
InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
const Instruction *I) override {
return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, I);
}
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind) override {
return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
}
InstructionCost
getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
bool VariableMask, Align Alignment,
TTI::TargetCostKind CostKind,
const Instruction *I = nullptr) override {
return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
}
InstructionCost getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) override {
return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace, CostKind,
UseMaskForCond, UseMaskForGaps);
}
InstructionCost
getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
Optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) override {
return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
}
InstructionCost
getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
TTI::TargetCostKind CostKind) override {
return Impl.getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
}
InstructionCost getExtendedAddReductionCost(
bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) override {
return Impl.getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
CostKind);
}
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) override {
return Impl.getIntrinsicInstrCost(ICA, CostKind);
}
InstructionCost getCallInstrCost(Function *F, Type *RetTy,
ArrayRef<Type *> Tys,
TTI::TargetCostKind CostKind) override {
return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
}
unsigned getNumberOfParts(Type *Tp) override {
return Impl.getNumberOfParts(Tp);
}
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
const SCEV *Ptr) override {
return Impl.getAddressComputationCost(Ty, SE, Ptr);
}
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
return Impl.getCostOfKeepingLiveOverCall(Tys);
}
bool getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) override {
return Impl.getTgtMemIntrinsic(Inst, Info);
}
unsigned getAtomicMemIntrinsicMaxElementSize() const override {
return Impl.getAtomicMemIntrinsicMaxElementSize();
}
Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
Type *ExpectedType) override {
return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
}
Type *getMemcpyLoopLoweringType(
LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
Optional<uint32_t> AtomicElementSize) const override {
return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
DestAddrSpace, SrcAlign, DestAlign,
AtomicElementSize);
}
void getMemcpyLoopResidualLoweringType(
SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
unsigned SrcAlign, unsigned DestAlign,
Optional<uint32_t> AtomicCpySize) const override {
Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
SrcAddrSpace, DestAddrSpace,
SrcAlign, DestAlign, AtomicCpySize);
}
bool areInlineCompatible(const Function *Caller,
const Function *Callee) const override {
return Impl.areInlineCompatible(Caller, Callee);
}
bool areTypesABICompatible(const Function *Caller, const Function *Callee,
const ArrayRef<Type *> &Types) const override {
return Impl.areTypesABICompatible(Caller, Callee, Types);
}
bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
}
bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
}
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
}
bool isLegalToVectorizeLoad(LoadInst *LI) const override {
return Impl.isLegalToVectorizeLoad(LI);
}
bool isLegalToVectorizeStore(StoreInst *SI) const override {
return Impl.isLegalToVectorizeStore(SI);
}
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const override {
return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const override {
return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
ElementCount VF) const override {
return Impl.isLegalToVectorizeReduction(RdxDesc, VF);
}
bool isElementTypeLegalForScalableVector(Type *Ty) const override {
return Impl.isElementTypeLegalForScalableVector(Ty);
}
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const override {
return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
}
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const override {
return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
}
bool preferInLoopReduction(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const override {
return Impl.preferInLoopReduction(Opcode, Ty, Flags);
}
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
ReductionFlags Flags) const override {
return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
}
bool shouldExpandReduction(const IntrinsicInst *II) const override {
return Impl.shouldExpandReduction(II);
}
unsigned getGISelRematGlobalCost() const override {
return Impl.getGISelRematGlobalCost();
}
unsigned getMinTripCountTailFoldingThreshold() const override {
return Impl.getMinTripCountTailFoldingThreshold();
}
bool supportsScalableVectors() const override {
return Impl.supportsScalableVectors();
}
bool enableScalableVectorization() const override {
return Impl.enableScalableVectorization();
}
bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
Align Alignment) const override {
return Impl.hasActiveVectorLength(Opcode, DataType, Alignment);
}
InstructionCost getInstructionLatency(const Instruction *I) override {
return Impl.getInstructionLatency(I);
}
VPLegalization
getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
return Impl.getVPLegalizationStrategy(PI);
}
};
template <typename T>
TargetTransformInfo::TargetTransformInfo(T Impl)
: TTIImpl(new Model<T>(Impl)) {}
/// Analysis pass providing the \c TargetTransformInfo.
///
/// The core idea of the TargetIRAnalysis is to expose an interface through
/// which LLVM targets can analyze and provide information about the middle
/// end's target-independent IR. This supports use cases such as target-aware
/// cost modeling of IR constructs.
///
/// This is a function analysis because much of the cost modeling for targets
/// is done in a subtarget specific way and LLVM supports compiling different
/// functions targeting different subtargets in order to support runtime
/// dispatch according to the observed subtarget.
class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
public:
typedef TargetTransformInfo Result;
/// Default construct a target IR analysis.
///
/// This will use the module's datalayout to construct a baseline
/// conservative TTI result.
TargetIRAnalysis();
/// Construct an IR analysis pass around a target-provide callback.
///
/// The callback will be called with a particular function for which the TTI
/// is needed and must return a TTI object for that function.
TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
// Value semantics. We spell out the constructors for MSVC.
TargetIRAnalysis(const TargetIRAnalysis &Arg)
: TTICallback(Arg.TTICallback) {}
TargetIRAnalysis(TargetIRAnalysis &&Arg)
: TTICallback(std::move(Arg.TTICallback)) {}
TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
TTICallback = RHS.TTICallback;
return *this;
}
TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
TTICallback = std::move(RHS.TTICallback);
return *this;
}
Result run(const Function &F, FunctionAnalysisManager &);
private:
friend AnalysisInfoMixin<TargetIRAnalysis>;
static AnalysisKey Key;
/// The callback used to produce a result.
///
/// We use a completely opaque callback so that targets can provide whatever
/// mechanism they desire for constructing the TTI for a given function.
///
/// FIXME: Should we really use std::function? It's relatively inefficient.
/// It might be possible to arrange for even stateful callbacks to outlive
/// the analysis and thus use a function_ref which would be lighter weight.
/// This may also be less error prone as the callback is likely to reference
/// the external TargetMachine, and that reference needs to never dangle.
std::function<Result(const Function &)> TTICallback;
/// Helper function used as the callback in the default constructor.
static Result getDefaultTTI(const Function &F);
};
/// Wrapper pass for TargetTransformInfo.
///
/// This pass can be constructed from a TTI object which it stores internally
/// and is queried by passes.
class TargetTransformInfoWrapperPass : public ImmutablePass {
TargetIRAnalysis TIRA;
Optional<TargetTransformInfo> TTI;
virtual void anchor();
public:
static char ID;
/// We must provide a default constructor for the pass but it should
/// never be used.
///
/// Use the constructor below or call one of the creation routines.
TargetTransformInfoWrapperPass();
explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
TargetTransformInfo &getTTI(const Function &F);
};
/// Create an analysis pass wrapper around a TTI object.
///
/// This analysis pass just holds the TTI instance and makes it available to
/// clients.
ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
} // namespace llvm
#endif