//===- TFUtils.h - utilities for tensorflow C API ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#ifndef LLVM_ANALYSIS_UTILS_TFUTILS_H
#define LLVM_ANALYSIS_UTILS_TFUTILS_H
#include "llvm/Config/llvm-config.h"
#ifdef LLVM_HAVE_TF_API
#include "llvm/ADT/StringMap.h"
#include "llvm/Analysis/TensorSpec.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/JSON.h"
#include <memory>
#include <vector>
namespace llvm {
/// Load a SavedModel, find the given inputs and outputs, and setup storage
/// for input tensors. The user is responsible for correctly dimensioning the
/// input tensors and setting their values before calling evaluate().
/// To initialize:
/// - construct the object
/// - initialize the input tensors using initInput. Indices must correspond to
/// indices in the InputNames used at construction.
/// To use:
/// - set input values by using getInput to get each input tensor, and then
/// setting internal scalars, for all dimensions (tensors are row-major:
/// https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/c/c_api.h#L205)
/// - call evaluate. The input tensors' values are not consumed after this, and
/// may still be read.
/// - use the outputs in the output vector
class TFModelEvaluatorImpl;
class EvaluationResultImpl;
/// Logging utility - given an ordered specification of features, and assuming
/// a scalar reward, allow logging feature values and rewards, and then print
/// as tf.train.SequenceExample text protobuf.
/// The assumption is that, for an event to be logged (i.e. a set of feature
/// values and a reward), the user calls the log* API for each feature exactly
/// once, providing the index matching the position in the feature spec list
/// provided at construction. The example assumes the first feature's element
/// type is float, the second is int64, and the reward is float:
///
/// event 0:
/// logFloatValue(0, ...)
/// logInt64Value(1, ...)
/// ...
/// logFloatReward(...)
/// event 1:
/// logFloatValue(0, ...)
/// logInt64Value(1, ...)
/// ...
/// logFloatReward(...)
///
/// At the end, call print to generate the protobuf.
/// Alternatively, don't call logReward at the end of each event, just
/// log{Float|Int32|Int64}FinalReward at the end.
class LoggerDataImpl;
class Logger final {
public:
/// Construct a Logger. If IncludeReward is false, then logReward or
/// logFinalReward shouldn't be called, and the reward feature won't be
/// printed out.
/// NOTE: the FeatureSpecs are expected to be in the same order (i.e. have
/// corresponding indices) with any MLModelRunner implementations
/// corresponding to the model being trained/logged.
Logger(const std::vector<LoggedFeatureSpec> &FeatureSpecs,
const TensorSpec &RewardSpec, bool IncludeReward);
~Logger();
void logFloatReward(float Value);
void logInt32Reward(int32_t Value);
void logInt64Reward(int64_t Value);
void logFloatFinalReward(float Value);
void logInt32FinalReward(int32_t Value);
void logInt64FinalReward(int64_t Value);
void logFloatValue(size_t FeatureID, const float *Value);
void logInt32Value(size_t FeatureID, const int32_t *Value);
void logInt64Value(size_t FeatureID, const int64_t *Value);
void logSpecifiedTensorValue(size_t FeatureID, const char *RawData);
// Warning! For int32_t, the return is set up for int64_t, so the caller needs
// to piecemeal cast their int32_t values.
// FIXME: let's drop int32_t support. While it's supported by evaluator, it's
// not supported by the tensorflow::SequenceExample proto. For small values,
// we can consider using bytes.
char *addEntryAndGetFloatOrInt64Buffer(size_t FeatureID);
// Flush the content of the log to the stream, clearing the stored data in the
// process.
void flush(std::string *Str);
void flush(raw_ostream &OS);
// Flush a set of logs that are produced from the same module, e.g.
// per-function regalloc traces, as a google::protobuf::Struct message.
static void flushLogs(raw_ostream &OS,
const StringMap<std::unique_ptr<Logger>> &Loggers);
private:
std::vector<LoggedFeatureSpec> FeatureSpecs;
TensorSpec RewardSpec;
const bool IncludeReward;
std::unique_ptr<LoggerDataImpl> LoggerData;
};
class TFModelEvaluator final {
public:
/// The result of a model evaluation. Handles the lifetime of the output
/// tensors, which means that their values need to be used before
/// the EvaluationResult's dtor is called.
class EvaluationResult {
public:
EvaluationResult(const EvaluationResult &) = delete;
EvaluationResult &operator=(const EvaluationResult &Other) = delete;
EvaluationResult(EvaluationResult &&Other);
EvaluationResult &operator=(EvaluationResult &&Other);
~EvaluationResult();
/// Get a (const) pointer to the first element of the tensor at Index.
template <typename T> T *getTensorValue(size_t Index) {
return static_cast<T *>(getUntypedTensorValue(Index));
}
template <typename T> const T *getTensorValue(size_t Index) const {
return static_cast<T *>(getUntypedTensorValue(Index));
}
/// Get a (const) pointer to the untyped data of the tensor.
void *getUntypedTensorValue(size_t Index);
const void *getUntypedTensorValue(size_t Index) const;
private:
friend class TFModelEvaluator;
EvaluationResult(std::unique_ptr<EvaluationResultImpl> Impl);
std::unique_ptr<EvaluationResultImpl> Impl;
};
TFModelEvaluator(StringRef SavedModelPath,
const std::vector<TensorSpec> &InputSpecs,
const std::vector<TensorSpec> &OutputSpecs,
const char *Tags = "serve");
TFModelEvaluator(StringRef SavedModelPath,
const std::vector<TensorSpec> &InputSpecs,
function_ref<TensorSpec(size_t)> GetOutputSpecs,
size_t OutputSpecsSize, const char *Tags = "serve");
~TFModelEvaluator();
TFModelEvaluator(const TFModelEvaluator &) = delete;
TFModelEvaluator(TFModelEvaluator &&) = delete;
/// Evaluate the model, assuming it is valid. Returns None if the evaluation
/// fails or the model is invalid, or an EvaluationResult otherwise. The
/// inputs are assumed to have been already provided via getInput(). When
/// returning None, it also invalidates this object.
Optional<EvaluationResult> evaluate();
/// Provides access to the input vector.
template <typename T> T *getInput(size_t Index) {
return static_cast<T *>(getUntypedInput(Index));
}
/// Returns true if the tensorflow model was loaded successfully, false
/// otherwise.
bool isValid() const { return !!Impl; }
/// Untyped access to input.
void *getUntypedInput(size_t Index);
private:
std::unique_ptr<TFModelEvaluatorImpl> Impl;
};
} // namespace llvm
#endif // LLVM_HAVE_TF_API
#endif // LLVM_ANALYSIS_UTILS_TFUTILS_H