; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -indvars -S -indvars-predicate-loops=0 | FileCheck %s ; ; Make sure that indvars isn't inserting canonical IVs. ; This is kinda hard to do until linear function test replacement is removed. target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64" ; We should only have 2 IVs. ; sext should be eliminated while preserving gep inboundsness. define i32 @sum(i32* %arr, i32 %n) nounwind { ; CHECK-LABEL: @sum( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[PRECOND:%.*]] = icmp slt i32 0, [[N:%.*]] ; CHECK-NEXT: br i1 [[PRECOND]], label [[PH:%.*]], label [[RETURN:%.*]] ; CHECK: ph: ; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64 ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ 0, [[PH]] ] ; CHECK-NEXT: [[S_01:%.*]] = phi i32 [ 0, [[PH]] ], [ [[SINC:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, i32* [[ARR:%.*]], i64 [[INDVARS_IV]] ; CHECK-NEXT: [[VAL:%.*]] = load i32, i32* [[ADR]], align 4 ; CHECK-NEXT: [[SINC]] = add nsw i32 [[S_01]], [[VAL]] ; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]] ; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: [[S_LCSSA:%.*]] = phi i32 [ [[SINC]], [[LOOP]] ] ; CHECK-NEXT: br label [[RETURN]] ; CHECK: return: ; CHECK-NEXT: [[S_0_LCSSA:%.*]] = phi i32 [ [[S_LCSSA]], [[EXIT]] ], [ 0, [[ENTRY:%.*]] ] ; CHECK-NEXT: ret i32 [[S_0_LCSSA]] ; entry: %precond = icmp slt i32 0, %n br i1 %precond, label %ph, label %return ph: br label %loop loop: %i.02 = phi i32 [ 0, %ph ], [ %iinc, %loop ] %s.01 = phi i32 [ 0, %ph ], [ %sinc, %loop ] %ofs = sext i32 %i.02 to i64 %adr = getelementptr inbounds i32, i32* %arr, i64 %ofs %val = load i32, i32* %adr %sinc = add nsw i32 %s.01, %val %iinc = add nsw i32 %i.02, 1 %cond = icmp slt i32 %iinc, %n br i1 %cond, label %loop, label %exit exit: %s.lcssa = phi i32 [ %sinc, %loop ] br label %return return: %s.0.lcssa = phi i32 [ %s.lcssa, %exit ], [ 0, %entry ] ret i32 %s.0.lcssa } ; We should only have 2 IVs. ; %ofs sext should be eliminated while preserving gep inboundsness. ; %vall sext should obviously not be eliminated define i64 @suml(i32* %arr, i32 %n) nounwind { ; CHECK-LABEL: @suml( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[PRECOND:%.*]] = icmp slt i32 0, [[N:%.*]] ; CHECK-NEXT: br i1 [[PRECOND]], label [[PH:%.*]], label [[RETURN:%.*]] ; CHECK: ph: ; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64 ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ 0, [[PH]] ] ; CHECK-NEXT: [[S_01:%.*]] = phi i64 [ 0, [[PH]] ], [ [[SINC:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, i32* [[ARR:%.*]], i64 [[INDVARS_IV]] ; CHECK-NEXT: [[VAL:%.*]] = load i32, i32* [[ADR]], align 4 ; CHECK-NEXT: [[VALL:%.*]] = sext i32 [[VAL]] to i64 ; CHECK-NEXT: [[SINC]] = add nsw i64 [[S_01]], [[VALL]] ; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]] ; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: [[S_LCSSA:%.*]] = phi i64 [ [[SINC]], [[LOOP]] ] ; CHECK-NEXT: br label [[RETURN]] ; CHECK: return: ; CHECK-NEXT: [[S_0_LCSSA:%.*]] = phi i64 [ [[S_LCSSA]], [[EXIT]] ], [ 0, [[ENTRY:%.*]] ] ; CHECK-NEXT: ret i64 [[S_0_LCSSA]] ; entry: %precond = icmp slt i32 0, %n br i1 %precond, label %ph, label %return ph: br label %loop loop: %i.02 = phi i32 [ 0, %ph ], [ %iinc, %loop ] %s.01 = phi i64 [ 0, %ph ], [ %sinc, %loop ] %ofs = sext i32 %i.02 to i64 %adr = getelementptr inbounds i32, i32* %arr, i64 %ofs %val = load i32, i32* %adr %vall = sext i32 %val to i64 %sinc = add nsw i64 %s.01, %vall %iinc = add nsw i32 %i.02, 1 %cond = icmp slt i32 %iinc, %n br i1 %cond, label %loop, label %exit exit: %s.lcssa = phi i64 [ %sinc, %loop ] br label %return return: %s.0.lcssa = phi i64 [ %s.lcssa, %exit ], [ 0, %entry ] ret i64 %s.0.lcssa } ; It's not indvars' job to perform LICM on %ofs ; Preserve exactly one pointer type IV. ; Don't create any extra adds. ; Preserve gep inboundsness, and don't factor it. define void @outofbounds(i32* %first, i32* %last, i32 %idx) nounwind { ; CHECK-LABEL: @outofbounds( ; CHECK-NEXT: [[PRECOND:%.*]] = icmp ne i32* [[FIRST:%.*]], [[LAST:%.*]] ; CHECK-NEXT: br i1 [[PRECOND]], label [[PH:%.*]], label [[RETURN:%.*]] ; CHECK: ph: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[PTRIV:%.*]] = phi i32* [ [[FIRST]], [[PH]] ], [ [[PTRPOST:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[OFS:%.*]] = sext i32 [[IDX:%.*]] to i64 ; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, i32* [[PTRIV]], i64 [[OFS]] ; CHECK-NEXT: store i32 3, i32* [[ADR]], align 4 ; CHECK-NEXT: [[PTRPOST]] = getelementptr inbounds i32, i32* [[PTRIV]], i32 1 ; CHECK-NEXT: [[COND:%.*]] = icmp ne i32* [[PTRPOST]], [[LAST]] ; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: br label [[RETURN]] ; CHECK: return: ; CHECK-NEXT: ret void ; %precond = icmp ne i32* %first, %last br i1 %precond, label %ph, label %return ph: br label %loop loop: %ptriv = phi i32* [ %first, %ph ], [ %ptrpost, %loop ] %ofs = sext i32 %idx to i64 %adr = getelementptr inbounds i32, i32* %ptriv, i64 %ofs store i32 3, i32* %adr %ptrpost = getelementptr inbounds i32, i32* %ptriv, i32 1 %cond = icmp ne i32* %ptrpost, %last br i1 %cond, label %loop, label %exit exit: br label %return return: ret void } %structI = type { i32 } ; Preserve casts define void @bitcastiv(i32 %start, i32 %limit, i32 %step, %structI* %base) ; CHECK-LABEL: @bitcastiv( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[IV:%.*]] = phi i32 [ [[START:%.*]], [[ENTRY:%.*]] ], [ [[NEXT:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[P:%.*]] = phi %structI* [ [[BASE:%.*]], [[ENTRY]] ], [ [[PINC:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[ADR:%.*]] = getelementptr [[STRUCTI:%.*]], %structI* [[P]], i32 0, i32 0 ; CHECK-NEXT: store i32 3, i32* [[ADR]], align 4 ; CHECK-NEXT: [[PP:%.*]] = bitcast %structI* [[P]] to i32* ; CHECK-NEXT: store i32 4, i32* [[PP]], align 4 ; CHECK-NEXT: [[PINC]] = getelementptr [[STRUCTI]], %structI* [[P]], i32 1 ; CHECK-NEXT: [[NEXT]] = add i32 [[IV]], 1 ; CHECK-NEXT: [[COND:%.*]] = icmp ne i32 [[NEXT]], [[LIMIT:%.*]] ; CHECK-NEXT: br i1 [[COND]], label [[LOOP]], label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: ret void ; nounwind { entry: br label %loop loop: %iv = phi i32 [%start, %entry], [%next, %loop] %p = phi %structI* [%base, %entry], [%pinc, %loop] %adr = getelementptr %structI, %structI* %p, i32 0, i32 0 store i32 3, i32* %adr %pp = bitcast %structI* %p to i32* store i32 4, i32* %pp %pinc = getelementptr %structI, %structI* %p, i32 1 %next = add i32 %iv, 1 %cond = icmp ne i32 %next, %limit br i1 %cond, label %loop, label %exit exit: ret void } ; Test inserting a truncate at a phi use. define void @maxvisitor(i32 %limit, i32* %base) nounwind { ; CHECK-LABEL: @maxvisitor( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[SMAX:%.*]] = call i32 @llvm.smax.i32(i32 [[LIMIT:%.*]], i32 1) ; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[SMAX]] to i64 ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP_INC:%.*]] ], [ 0, [[ENTRY:%.*]] ] ; CHECK-NEXT: [[MAX:%.*]] = phi i32 [ 0, [[ENTRY]] ], [ [[MAX_NEXT:%.*]], [[LOOP_INC]] ] ; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, i32* [[BASE:%.*]], i64 [[INDVARS_IV]] ; CHECK-NEXT: [[VAL:%.*]] = load i32, i32* [[ADR]], align 4 ; CHECK-NEXT: [[CMP19:%.*]] = icmp sgt i32 [[VAL]], [[MAX]] ; CHECK-NEXT: br i1 [[CMP19]], label [[IF_THEN:%.*]], label [[IF_ELSE:%.*]] ; CHECK: if.then: ; CHECK-NEXT: [[TMP0:%.*]] = trunc i64 [[INDVARS_IV]] to i32 ; CHECK-NEXT: br label [[LOOP_INC]] ; CHECK: if.else: ; CHECK-NEXT: br label [[LOOP_INC]] ; CHECK: loop.inc: ; CHECK-NEXT: [[MAX_NEXT]] = phi i32 [ [[TMP0]], [[IF_THEN]] ], [ [[MAX]], [[IF_ELSE]] ] ; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp ne i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]] ; CHECK-NEXT: br i1 [[EXITCOND]], label [[LOOP]], label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %loop loop: %idx = phi i32 [ 0, %entry ], [ %idx.next, %loop.inc ] %max = phi i32 [ 0, %entry ], [ %max.next, %loop.inc ] %idxprom = sext i32 %idx to i64 %adr = getelementptr inbounds i32, i32* %base, i64 %idxprom %val = load i32, i32* %adr %cmp19 = icmp sgt i32 %val, %max br i1 %cmp19, label %if.then, label %if.else if.then: br label %loop.inc if.else: br label %loop.inc loop.inc: %max.next = phi i32 [ %idx, %if.then ], [ %max, %if.else ] %idx.next = add nsw i32 %idx, 1 %cmp = icmp slt i32 %idx.next, %limit br i1 %cmp, label %loop, label %exit exit: ret void } ; Test an edge case of removing an identity phi that directly feeds ; back to the loop iv. define void @identityphi(i32 %limit) nounwind { ; CHECK-LABEL: @identityphi( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: br i1 undef, label [[IF_THEN:%.*]], label [[CONTROL:%.*]] ; CHECK: if.then: ; CHECK-NEXT: br label [[CONTROL]] ; CHECK: control: ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i32 0, [[LIMIT:%.*]] ; CHECK-NEXT: br i1 [[CMP]], label [[LOOP]], label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %control ] br i1 undef, label %if.then, label %control if.then: br label %control control: %iv.next = phi i32 [ %iv, %loop ], [ undef, %if.then ] %cmp = icmp slt i32 %iv.next, %limit br i1 %cmp, label %loop, label %exit exit: ret void } ; Test cloning an or, which is not an OverflowBinaryOperator. define i64 @cloneOr(i32 %limit, i64* %base) nounwind { ; CHECK-LABEL: @cloneOr( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[HALFLIM:%.*]] = ashr i32 [[LIMIT:%.*]], 2 ; CHECK-NEXT: [[TMP0:%.*]] = sext i32 [[HALFLIM]] to i64 ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[LOOP]] ], [ 0, [[ENTRY:%.*]] ] ; CHECK-NEXT: [[ADR:%.*]] = getelementptr i64, i64* [[BASE:%.*]], i64 [[INDVARS_IV]] ; CHECK-NEXT: [[VAL:%.*]] = load i64, i64* [[ADR]], align 8 ; CHECK-NEXT: [[TMP1:%.*]] = or i64 [[INDVARS_IV]], 1 ; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 2 ; CHECK-NEXT: [[CMP:%.*]] = icmp slt i64 [[INDVARS_IV_NEXT]], [[TMP0]] ; CHECK-NEXT: br i1 [[CMP]], label [[LOOP]], label [[EXIT:%.*]] ; CHECK: exit: ; CHECK-NEXT: [[VAL_LCSSA:%.*]] = phi i64 [ [[VAL]], [[LOOP]] ] ; CHECK-NEXT: [[T3_LCSSA:%.*]] = phi i64 [ [[TMP1]], [[LOOP]] ] ; CHECK-NEXT: [[RESULT:%.*]] = and i64 [[VAL_LCSSA]], [[T3_LCSSA]] ; CHECK-NEXT: ret i64 [[RESULT]] ; entry: ; ensure that the loop can't overflow %halfLim = ashr i32 %limit, 2 br label %loop loop: %iv = phi i32 [ 0, %entry], [ %iv.next, %loop ] %t1 = sext i32 %iv to i64 %adr = getelementptr i64, i64* %base, i64 %t1 %val = load i64, i64* %adr %t2 = or i32 %iv, 1 %t3 = sext i32 %t2 to i64 %iv.next = add i32 %iv, 2 %cmp = icmp slt i32 %iv.next, %halfLim br i1 %cmp, label %loop, label %exit exit: %result = and i64 %val, %t3 ret i64 %result } ; The i induction variable looks like a wrap-around, but it really is just ; a simple affine IV. Make sure that indvars simplifies through. ; ReplaceLoopExitValue should fold the return value to constant 9. define i32 @indirectRecurrence() nounwind { ; CHECK-LABEL: @indirectRecurrence( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[J_0:%.*]] = phi i32 [ 1, [[ENTRY:%.*]] ], [ [[J_NEXT:%.*]], [[COND_TRUE:%.*]] ] ; CHECK-NEXT: [[TMP:%.*]] = icmp ne i32 [[J_0]], 10 ; CHECK-NEXT: br i1 [[TMP]], label [[COND_TRUE]], label [[RETURN:%.*]] ; CHECK: cond_true: ; CHECK-NEXT: [[J_NEXT]] = add nuw nsw i32 [[J_0]], 1 ; CHECK-NEXT: br label [[LOOP]] ; CHECK: return: ; CHECK-NEXT: ret i32 9 ; entry: br label %loop loop: %j.0 = phi i32 [ 1, %entry ], [ %j.next, %cond_true ] %i.0 = phi i32 [ 0, %entry ], [ %j.0, %cond_true ] %tmp = icmp ne i32 %j.0, 10 br i1 %tmp, label %cond_true, label %return cond_true: %j.next = add i32 %j.0, 1 br label %loop return: ret i32 %i.0 } ; Eliminate the congruent phis j, k, and l. ; Eliminate the redundant IV increments k.next and l.next. ; Two phis should remain, one starting at %init, and one at %init1. ; Two increments should remain, one by %step and one by %step1. ; Five live-outs should remain. define i32 @isomorphic(i32 %init, i32 %step, i32 %lim) nounwind { ; CHECK-LABEL: @isomorphic( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[STEP1:%.*]] = add i32 [[STEP:%.*]], 1 ; CHECK-NEXT: [[INIT1:%.*]] = add i32 [[INIT:%.*]], [[STEP1]] ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[II:%.*]] = phi i32 [ [[INIT1]], [[ENTRY:%.*]] ], [ [[II_NEXT:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[J:%.*]] = phi i32 [ [[INIT]], [[ENTRY]] ], [ [[J_NEXT:%.*]], [[LOOP]] ] ; CHECK-NEXT: [[II_NEXT]] = add i32 [[II]], [[STEP1]] ; CHECK-NEXT: [[J_NEXT]] = add i32 [[J]], [[STEP1]] ; CHECK-NEXT: [[L_STEP:%.*]] = add i32 [[J]], [[STEP]] ; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[II_NEXT]], [[LIM:%.*]] ; CHECK-NEXT: br i1 [[CMP]], label [[LOOP]], label [[RETURN:%.*]] ; CHECK: return: ; CHECK-NEXT: [[I_LCSSA:%.*]] = phi i32 [ [[J]], [[LOOP]] ] ; CHECK-NEXT: [[J_NEXT_LCSSA:%.*]] = phi i32 [ [[J_NEXT]], [[LOOP]] ] ; CHECK-NEXT: [[K_NEXT_LCSSA:%.*]] = phi i32 [ [[II_NEXT]], [[LOOP]] ] ; CHECK-NEXT: [[L_STEP_LCSSA:%.*]] = phi i32 [ [[L_STEP]], [[LOOP]] ] ; CHECK-NEXT: [[L_NEXT_LCSSA:%.*]] = phi i32 [ [[J_NEXT]], [[LOOP]] ] ; CHECK-NEXT: [[SUM1:%.*]] = add i32 [[I_LCSSA]], [[J_NEXT_LCSSA]] ; CHECK-NEXT: [[SUM2:%.*]] = add i32 [[SUM1]], [[K_NEXT_LCSSA]] ; CHECK-NEXT: [[SUM3:%.*]] = add i32 [[SUM1]], [[L_STEP_LCSSA]] ; CHECK-NEXT: [[SUM4:%.*]] = add i32 [[SUM1]], [[L_NEXT_LCSSA]] ; CHECK-NEXT: ret i32 [[SUM4]] ; entry: %step1 = add i32 %step, 1 %init1 = add i32 %init, %step1 %l.0 = sub i32 %init1, %step1 br label %loop loop: %ii = phi i32 [ %init1, %entry ], [ %ii.next, %loop ] %i = phi i32 [ %init, %entry ], [ %ii, %loop ] %j = phi i32 [ %init, %entry ], [ %j.next, %loop ] %k = phi i32 [ %init1, %entry ], [ %k.next, %loop ] %l = phi i32 [ %l.0, %entry ], [ %l.next, %loop ] %ii.next = add i32 %ii, %step1 %j.next = add i32 %j, %step1 %k.next = add i32 %k, %step1 %l.step = add i32 %l, %step %l.next = add i32 %l.step, 1 %cmp = icmp ne i32 %ii.next, %lim br i1 %cmp, label %loop, label %return return: %sum1 = add i32 %i, %j.next %sum2 = add i32 %sum1, %k.next %sum3 = add i32 %sum1, %l.step %sum4 = add i32 %sum1, %l.next ret i32 %sum4 } ; Test a GEP IV that is derived from another GEP IV by a nop gep that ; lowers the type without changing the expression. %structIF = type { i32, float } define void @congruentgepiv(%structIF* %base) nounwind uwtable ssp { ; CHECK-LABEL: @congruentgepiv( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[LOOP:%.*]] ; CHECK: loop: ; CHECK-NEXT: [[INDVARS1:%.*]] = bitcast %structIF* [[BASE:%.*]] to i32* ; CHECK-NEXT: store i32 4, i32* [[INDVARS1]], align 4 ; CHECK-NEXT: br i1 false, label [[LATCH:%.*]], label [[EXIT:%.*]] ; CHECK: latch: ; CHECK-NEXT: br label [[LOOP]] ; CHECK: exit: ; CHECK-NEXT: ret void ; entry: %first = getelementptr inbounds %structIF, %structIF* %base, i64 0, i32 0 br label %loop loop: %ptr.iv = phi %structIF* [ %ptr.inc, %latch ], [ %base, %entry ] %next = phi i32* [ %next.inc, %latch ], [ %first, %entry ] store i32 4, i32* %next br i1 undef, label %latch, label %exit latch: ; preds = %for.inc50.i %ptr.inc = getelementptr inbounds %structIF, %structIF* %ptr.iv, i64 1 %next.inc = getelementptr inbounds %structIF, %structIF* %ptr.inc, i64 0, i32 0 br label %loop exit: ret void } declare void @use32(i32 %x) declare void @use64(i64 %x) ; Test a widened IV that is used by a phi on different paths within the loop. define void @phiUsesTrunc() nounwind { ; CHECK-LABEL: @phiUsesTrunc( ; CHECK-NEXT: entry: ; CHECK-NEXT: br i1 undef, label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_END:%.*]] ; CHECK: for.body.preheader: ; CHECK-NEXT: br label [[FOR_BODY:%.*]] ; CHECK: for.body: ; CHECK-NEXT: br i1 undef, label [[IF_THEN:%.*]], label [[IF_ELSE:%.*]] ; CHECK: if.then: ; CHECK-NEXT: br i1 undef, label [[IF_THEN33:%.*]], label [[FOR_INC:%.*]] ; CHECK: if.then33: ; CHECK-NEXT: br label [[FOR_INC]] ; CHECK: if.else: ; CHECK-NEXT: br i1 undef, label [[IF_THEN97:%.*]], label [[FOR_INC]] ; CHECK: if.then97: ; CHECK-NEXT: call void @use64(i64 1) ; CHECK-NEXT: br label [[FOR_INC]] ; CHECK: for.inc: ; CHECK-NEXT: [[KMIN_1:%.*]] = phi i32 [ 1, [[IF_THEN33]] ], [ 0, [[IF_THEN]] ], [ 1, [[IF_THEN97]] ], [ 0, [[IF_ELSE]] ] ; CHECK-NEXT: call void @use32(i32 [[KMIN_1]]) ; CHECK-NEXT: br i1 false, label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]] ; CHECK: for.end.loopexit: ; CHECK-NEXT: br label [[FOR_END]] ; CHECK: for.end: ; CHECK-NEXT: ret void ; entry: br i1 undef, label %for.body, label %for.end for.body: %iv = phi i32 [ %inc, %for.inc ], [ 1, %entry ] br i1 undef, label %if.then, label %if.else if.then: br i1 undef, label %if.then33, label %for.inc if.then33: br label %for.inc if.else: br i1 undef, label %if.then97, label %for.inc if.then97: %idxprom100 = sext i32 %iv to i64 call void @use64(i64 %idxprom100) br label %for.inc for.inc: %kmin.1 = phi i32 [ %iv, %if.then33 ], [ 0, %if.then ], [ %iv, %if.then97 ], [ 0, %if.else ] call void @use32(i32 %kmin.1) %inc = add nsw i32 %iv, 1 br i1 undef, label %for.body, label %for.end for.end: ret void }