#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#ifdef EXPENSIVE_CHECKS
#include "llvm/IR/Verifier.h"
#endif
#include <cassert>
#include <string>
using namespace llvm;
#define DEBUG_TYPE "attributor"
DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
"Determine what attributes are manifested in the IR");
STATISTIC(NumFnDeleted, "Number of function deleted");
STATISTIC(NumFnWithExactDefinition,
"Number of functions with exact definitions");
STATISTIC(NumFnWithoutExactDefinition,
"Number of functions without exact definitions");
STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
STATISTIC(NumAttributesTimedOut,
"Number of abstract attributes timed out before fixpoint");
STATISTIC(NumAttributesValidFixpoint,
"Number of abstract attributes in a valid fixpoint state");
STATISTIC(NumAttributesManifested,
"Number of abstract attributes manifested in IR");
static cl::opt<unsigned>
SetFixpointIterations("attributor-max-iterations", cl::Hidden,
cl::desc("Maximal number of fixpoint iterations."),
cl::init(32));
static cl::opt<unsigned, true> MaxInitializationChainLengthX(
"attributor-max-initialization-chain-length", cl::Hidden,
cl::desc(
"Maximal number of chained initializations (to avoid stack overflows)"),
cl::location(MaxInitializationChainLength), cl::init(1024));
unsigned llvm::MaxInitializationChainLength;
static cl::opt<bool> VerifyMaxFixpointIterations(
"attributor-max-iterations-verify", cl::Hidden,
cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
cl::init(false));
static cl::opt<bool> AnnotateDeclarationCallSites(
"attributor-annotate-decl-cs", cl::Hidden,
cl::desc("Annotate call sites of function declarations."), cl::init(false));
static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
cl::init(true), cl::Hidden);
static cl::opt<bool>
AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
cl::desc("Allow the Attributor to create shallow "
"wrappers for non-exact definitions."),
cl::init(false));
static cl::opt<bool>
AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
cl::desc("Allow the Attributor to use IP information "
"derived from non-exact functions via cloning"),
cl::init(false));
#ifndef NDEBUG
static cl::list<std::string>
SeedAllowList("attributor-seed-allow-list", cl::Hidden,
cl::desc("Comma seperated list of attribute names that are "
"allowed to be seeded."),
cl::CommaSeparated);
static cl::list<std::string> FunctionSeedAllowList(
"attributor-function-seed-allow-list", cl::Hidden,
cl::desc("Comma seperated list of function names that are "
"allowed to be seeded."),
cl::CommaSeparated);
#endif
static cl::opt<bool>
DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
cl::desc("Dump the dependency graph to dot files."),
cl::init(false));
static cl::opt<std::string> DepGraphDotFileNamePrefix(
"attributor-depgraph-dot-filename-prefix", cl::Hidden,
cl::desc("The prefix used for the CallGraph dot file names."));
static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
cl::desc("View the dependency graph."),
cl::init(false));
static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
cl::desc("Print attribute dependencies"),
cl::init(false));
static cl::opt<bool> EnableCallSiteSpecific(
"attributor-enable-call-site-specific-deduction", cl::Hidden,
cl::desc("Allow the Attributor to do call site specific analysis"),
cl::init(false));
static cl::opt<bool>
PrintCallGraph("attributor-print-call-graph", cl::Hidden,
cl::desc("Print Attributor's internal call graph"),
cl::init(false));
static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
cl::Hidden,
cl::desc("Try to simplify all loads."),
cl::init(true));
ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
return L == ChangeStatus::CHANGED ? L : R;
}
ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
L = L | R;
return L;
}
ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
return L == ChangeStatus::UNCHANGED ? L : R;
}
ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
L = L & R;
return L;
}
bool AA::isNoSyncInst(Attributor &A, const Instruction &I,
const AbstractAttribute &QueryingAA) {
if (const auto *CB = dyn_cast<CallBase>(&I)) {
if (CB->hasFnAttr(Attribute::NoSync))
return true;
if (!CB->isConvergent() && !CB->mayReadOrWriteMemory())
return true;
if (AANoSync::isNoSyncIntrinsic(&I))
return true;
const auto &NoSyncAA = A.getAAFor<AANoSync>(
QueryingAA, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
return NoSyncAA.isAssumedNoSync();
}
if (!I.mayReadOrWriteMemory())
return true;
return !I.isVolatile() && !AANoSync::isNonRelaxedAtomic(&I);
}
bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
const Value &V, bool ForAnalysisOnly) {
if (!ForAnalysisOnly)
return false;
auto &InstanceInfoAA = A.getAAFor<AAInstanceInfo>(
QueryingAA, IRPosition::value(V), DepClassTy::OPTIONAL);
return InstanceInfoAA.isAssumedUniqueForAnalysis();
}
Constant *AA::getInitialValueForObj(Value &Obj, Type &Ty,
const TargetLibraryInfo *TLI) {
if (isa<AllocaInst>(Obj))
return UndefValue::get(&Ty);
if (Constant *Init = getInitialValueOfAllocation(&Obj, TLI, &Ty))
return Init;
auto *GV = dyn_cast<GlobalVariable>(&Obj);
if (!GV)
return nullptr;
if (!GV->hasLocalLinkage() && !(GV->isConstant() && GV->hasInitializer()))
return nullptr;
if (!GV->hasInitializer())
return UndefValue::get(&Ty);
return dyn_cast_or_null<Constant>(getWithType(*GV->getInitializer(), Ty));
}
bool AA::isValidInScope(const Value &V, const Function *Scope) {
if (isa<Constant>(V))
return true;
if (auto *I = dyn_cast<Instruction>(&V))
return I->getFunction() == Scope;
if (auto *A = dyn_cast<Argument>(&V))
return A->getParent() == Scope;
return false;
}
bool AA::isValidAtPosition(const AA::ValueAndContext &VAC,
InformationCache &InfoCache) {
if (isa<Constant>(VAC.getValue()) || VAC.getValue() == VAC.getCtxI())
return true;
const Function *Scope = nullptr;
const Instruction *CtxI = VAC.getCtxI();
if (CtxI)
Scope = CtxI->getFunction();
if (auto *A = dyn_cast<Argument>(VAC.getValue()))
return A->getParent() == Scope;
if (auto *I = dyn_cast<Instruction>(VAC.getValue())) {
if (I->getFunction() == Scope) {
if (const DominatorTree *DT =
InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
*Scope))
return DT->dominates(I, CtxI);
if (CtxI && I->getParent() == CtxI->getParent())
return llvm::any_of(
make_range(I->getIterator(), I->getParent()->end()),
[&](const Instruction &AfterI) { return &AfterI == CtxI; });
}
}
return false;
}
Value *AA::getWithType(Value &V, Type &Ty) {
if (V.getType() == &Ty)
return &V;
if (isa<PoisonValue>(V))
return PoisonValue::get(&Ty);
if (isa<UndefValue>(V))
return UndefValue::get(&Ty);
if (auto *C = dyn_cast<Constant>(&V)) {
if (C->isNullValue())
return Constant::getNullValue(&Ty);
if (C->getType()->isPointerTy() && Ty.isPointerTy())
return ConstantExpr::getPointerCast(C, &Ty);
if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
return ConstantExpr::getTrunc(C, &Ty, true);
if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
return ConstantExpr::getFPTrunc(C, &Ty, true);
}
}
return nullptr;
}
Optional<Value *>
AA::combineOptionalValuesInAAValueLatice(const Optional<Value *> &A,
const Optional<Value *> &B, Type *Ty) {
if (A == B)
return A;
if (!B)
return A;
if (*B == nullptr)
return nullptr;
if (!A)
return Ty ? getWithType(**B, *Ty) : nullptr;
if (*A == nullptr)
return nullptr;
if (!Ty)
Ty = (*A)->getType();
if (isa_and_nonnull<UndefValue>(*A))
return getWithType(**B, *Ty);
if (isa<UndefValue>(*B))
return A;
if (*A && *B && *A == getWithType(**B, *Ty))
return A;
return nullptr;
}
template <bool IsLoad, typename Ty>
static bool getPotentialCopiesOfMemoryValue(
Attributor &A, Ty &I, SmallSetVector<Value *, 4> &PotentialCopies,
SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
bool OnlyExact) {
LLVM_DEBUG(dbgs() << "Trying to determine the potential copies of " << I
<< " (only exact: " << OnlyExact << ")\n";);
Value &Ptr = *I.getPointerOperand();
SmallSetVector<Value *, 8> Objects;
if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, QueryingAA, &I,
UsedAssumedInformation)) {
LLVM_DEBUG(
dbgs() << "Underlying objects stored into could not be determined\n";);
return false;
}
SmallVector<const AAPointerInfo *> PIs;
SmallVector<Value *> NewCopies;
SmallVector<Instruction *> NewCopyOrigins;
const auto *TLI =
A.getInfoCache().getTargetLibraryInfoForFunction(*I.getFunction());
LLVM_DEBUG(dbgs() << "Visit " << Objects.size() << " objects:\n");
for (Value *Obj : Objects) {
LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n");
if (isa<UndefValue>(Obj))
continue;
if (isa<ConstantPointerNull>(Obj)) {
if (!NullPointerIsDefined(I.getFunction(),
Ptr.getType()->getPointerAddressSpace()) &&
A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation,
AA::Interprocedural) == Obj)
continue;
LLVM_DEBUG(
dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
return false;
}
if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj) &&
!(IsLoad ? isAllocationFn(Obj, TLI) : isNoAliasCall(Obj))) {
LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << *Obj
<< "\n";);
return false;
}
if (auto *GV = dyn_cast<GlobalVariable>(Obj))
if (!GV->hasLocalLinkage() &&
!(GV->isConstant() && GV->hasInitializer())) {
LLVM_DEBUG(dbgs() << "Underlying object is global with external "
"linkage, not supported yet: "
<< *Obj << "\n";);
return false;
}
bool NullOnly = true;
bool NullRequired = false;
auto CheckForNullOnlyAndUndef = [&](Optional<Value *> V, bool IsExact) {
if (!V || *V == nullptr)
NullOnly = false;
else if (isa<UndefValue>(*V))
;
else if (isa<Constant>(*V) && cast<Constant>(*V)->isNullValue())
NullRequired = !IsExact;
else
NullOnly = false;
};
auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
if ((IsLoad && !Acc.isWrite()) || (!IsLoad && !Acc.isRead()))
return true;
if (IsLoad && Acc.isWrittenValueYetUndetermined())
return true;
CheckForNullOnlyAndUndef(Acc.getContent(), IsExact);
if (OnlyExact && !IsExact && !NullOnly &&
!isa_and_nonnull<UndefValue>(Acc.getWrittenValue())) {
LLVM_DEBUG(dbgs() << "Non exact access " << *Acc.getRemoteInst()
<< ", abort!\n");
return false;
}
if (NullRequired && !NullOnly) {
LLVM_DEBUG(dbgs() << "Required all `null` accesses due to non exact "
"one, however found non-null one: "
<< *Acc.getRemoteInst() << ", abort!\n");
return false;
}
if (IsLoad) {
assert(isa<LoadInst>(I) && "Expected load or store instruction only!");
if (!Acc.isWrittenValueUnknown()) {
NewCopies.push_back(Acc.getWrittenValue());
NewCopyOrigins.push_back(Acc.getRemoteInst());
return true;
}
auto *SI = dyn_cast<StoreInst>(Acc.getRemoteInst());
if (!SI) {
LLVM_DEBUG(dbgs() << "Underlying object written through a non-store "
"instruction not supported yet: "
<< *Acc.getRemoteInst() << "\n";);
return false;
}
NewCopies.push_back(SI->getValueOperand());
NewCopyOrigins.push_back(SI);
} else {
assert(isa<StoreInst>(I) && "Expected load or store instruction only!");
auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
if (!LI && OnlyExact) {
LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
"instruction not supported yet: "
<< *Acc.getRemoteInst() << "\n";);
return false;
}
NewCopies.push_back(Acc.getRemoteInst());
}
return true;
};
bool HasBeenWrittenTo = false;
auto &PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(*Obj),
DepClassTy::NONE);
if (!PI.forallInterferingAccesses(A, QueryingAA, I, CheckAccess,
HasBeenWrittenTo)) {
LLVM_DEBUG(
dbgs()
<< "Failed to verify all interfering accesses for underlying object: "
<< *Obj << "\n");
return false;
}
if (IsLoad && !HasBeenWrittenTo) {
Value *InitialValue = AA::getInitialValueForObj(*Obj, *I.getType(), TLI);
if (!InitialValue)
return false;
CheckForNullOnlyAndUndef(InitialValue, true);
if (NullRequired && !NullOnly) {
LLVM_DEBUG(dbgs() << "Non exact access but initial value that is not "
"null or undef, abort!\n");
return false;
}
NewCopies.push_back(InitialValue);
NewCopyOrigins.push_back(nullptr);
}
PIs.push_back(&PI);
}
for (auto *PI : PIs) {
if (!PI->getState().isAtFixpoint())
UsedAssumedInformation = true;
A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
}
PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
PotentialValueOrigins.insert(NewCopyOrigins.begin(), NewCopyOrigins.end());
return true;
}
bool AA::getPotentiallyLoadedValues(
Attributor &A, LoadInst &LI, SmallSetVector<Value *, 4> &PotentialValues,
SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
bool OnlyExact) {
return getPotentialCopiesOfMemoryValue< true>(
A, LI, PotentialValues, PotentialValueOrigins, QueryingAA,
UsedAssumedInformation, OnlyExact);
}
bool AA::getPotentialCopiesOfStoredValue(
Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
bool OnlyExact) {
SmallSetVector<Instruction *, 4> PotentialValueOrigins;
return getPotentialCopiesOfMemoryValue< false>(
A, SI, PotentialCopies, PotentialValueOrigins, QueryingAA,
UsedAssumedInformation, OnlyExact);
}
static bool isAssumedReadOnlyOrReadNone(Attributor &A, const IRPosition &IRP,
const AbstractAttribute &QueryingAA,
bool RequireReadNone, bool &IsKnown) {
IRPosition::Kind Kind = IRP.getPositionKind();
if (Kind == IRPosition::IRP_FUNCTION || Kind == IRPosition::IRP_CALL_SITE) {
const auto &MemLocAA =
A.getAAFor<AAMemoryLocation>(QueryingAA, IRP, DepClassTy::NONE);
if (MemLocAA.isAssumedReadNone()) {
IsKnown = MemLocAA.isKnownReadNone();
if (!IsKnown)
A.recordDependence(MemLocAA, QueryingAA, DepClassTy::OPTIONAL);
return true;
}
}
const auto &MemBehaviorAA =
A.getAAFor<AAMemoryBehavior>(QueryingAA, IRP, DepClassTy::NONE);
if (MemBehaviorAA.isAssumedReadNone() ||
(!RequireReadNone && MemBehaviorAA.isAssumedReadOnly())) {
IsKnown = RequireReadNone ? MemBehaviorAA.isKnownReadNone()
: MemBehaviorAA.isKnownReadOnly();
if (!IsKnown)
A.recordDependence(MemBehaviorAA, QueryingAA, DepClassTy::OPTIONAL);
return true;
}
return false;
}
bool AA::isAssumedReadOnly(Attributor &A, const IRPosition &IRP,
const AbstractAttribute &QueryingAA, bool &IsKnown) {
return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
false, IsKnown);
}
bool AA::isAssumedReadNone(Attributor &A, const IRPosition &IRP,
const AbstractAttribute &QueryingAA, bool &IsKnown) {
return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
true, IsKnown);
}
static bool
isPotentiallyReachable(Attributor &A, const Instruction &FromI,
const Instruction *ToI, const Function &ToFn,
const AbstractAttribute &QueryingAA,
std::function<bool(const Function &F)> GoBackwardsCB) {
LLVM_DEBUG(dbgs() << "[AA] isPotentiallyReachable @" << ToFn.getName()
<< " from " << FromI << " [GBCB: " << bool(GoBackwardsCB)
<< "]\n");
if (!GoBackwardsCB) {
LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from " << FromI
<< " is not checked backwards, abort\n");
return true;
}
SmallPtrSet<const Instruction *, 8> Visited;
SmallVector<const Instruction *> Worklist;
Worklist.push_back(&FromI);
while (!Worklist.empty()) {
const Instruction *CurFromI = Worklist.pop_back_val();
if (!Visited.insert(CurFromI).second)
continue;
const Function *FromFn = CurFromI->getFunction();
if (FromFn == &ToFn) {
if (!ToI)
return true;
LLVM_DEBUG(dbgs() << "[AA] check " << *ToI << " from " << *CurFromI
<< " intraprocedurally\n");
const auto &ReachabilityAA = A.getAAFor<AAReachability>(
QueryingAA, IRPosition::function(ToFn), DepClassTy::OPTIONAL);
bool Result = ReachabilityAA.isAssumedReachable(A, *CurFromI, *ToI);
LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " "
<< (Result ? "can potentially " : "cannot ") << "reach "
<< *ToI << " [Intra]\n");
if (Result)
return true;
}
const auto &FnReachabilityAA = A.getAAFor<AAFunctionReachability>(
QueryingAA, IRPosition::function(*FromFn), DepClassTy::OPTIONAL);
bool Result = FnReachabilityAA.instructionCanReach(
A, *CurFromI, ToFn);
LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " in @" << FromFn->getName()
<< " " << (Result ? "can potentially " : "cannot ")
<< "reach @" << ToFn.getName() << " [FromFn]\n");
if (Result)
return true;
if (!GoBackwardsCB(*FromFn))
continue;
LLVM_DEBUG(dbgs() << "Stepping backwards to the call sites of @"
<< FromFn->getName() << "\n");
auto CheckCallSite = [&](AbstractCallSite ACS) {
CallBase *CB = ACS.getInstruction();
if (!CB)
return false;
if (isa<InvokeInst>(CB))
return false;
Instruction *Inst = CB->getNextNonDebugInstruction();
Worklist.push_back(Inst);
return true;
};
bool UsedAssumedInformation = false;
Result = !A.checkForAllCallSites(CheckCallSite, *FromFn,
true,
&QueryingAA, UsedAssumedInformation);
if (Result) {
LLVM_DEBUG(dbgs() << "[AA] stepping back to call sites from " << *CurFromI
<< " in @" << FromFn->getName()
<< " failed, give up\n");
return true;
}
LLVM_DEBUG(dbgs() << "[AA] stepped back to call sites from " << *CurFromI
<< " in @" << FromFn->getName()
<< " worklist size is: " << Worklist.size() << "\n");
}
return false;
}
bool AA::isPotentiallyReachable(
Attributor &A, const Instruction &FromI, const Instruction &ToI,
const AbstractAttribute &QueryingAA,
std::function<bool(const Function &F)> GoBackwardsCB) {
LLVM_DEBUG(dbgs() << "[AA] isPotentiallyReachable " << ToI << " from "
<< FromI << " [GBCB: " << bool(GoBackwardsCB) << "]\n");
const Function *ToFn = ToI.getFunction();
return ::isPotentiallyReachable(A, FromI, &ToI, *ToFn, QueryingAA,
GoBackwardsCB);
}
bool AA::isPotentiallyReachable(
Attributor &A, const Instruction &FromI, const Function &ToFn,
const AbstractAttribute &QueryingAA,
std::function<bool(const Function &F)> GoBackwardsCB) {
return ::isPotentiallyReachable(A, FromI, nullptr, ToFn, QueryingAA,
GoBackwardsCB);
}
static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
if (!Old.isIntAttribute())
return true;
return Old.getValueAsInt() >= New.getValueAsInt();
}
static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
AttributeList &Attrs, int AttrIdx,
bool ForceReplace = false) {
if (Attr.isEnumAttribute()) {
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
if (!ForceReplace &&
isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
return true;
}
if (Attr.isStringAttribute()) {
StringRef Kind = Attr.getKindAsString();
if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
if (!ForceReplace &&
isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
return true;
}
if (Attr.isIntAttribute()) {
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
if (!ForceReplace &&
isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
return false;
Attrs = Attrs.removeAttributeAtIndex(Ctx, AttrIdx, Kind);
Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
return true;
}
llvm_unreachable("Expected enum or string attribute!");
}
Argument *IRPosition::getAssociatedArgument() const {
if (getPositionKind() == IRP_ARGUMENT)
return cast<Argument>(&getAnchorValue());
int ArgNo = getCallSiteArgNo();
if (ArgNo < 0)
return nullptr;
Optional<Argument *> CBCandidateArg;
SmallVector<const Use *, 4> CallbackUses;
const auto &CB = cast<CallBase>(getAnchorValue());
AbstractCallSite::getCallbackUses(CB, CallbackUses);
for (const Use *U : CallbackUses) {
AbstractCallSite ACS(U);
assert(ACS && ACS.isCallbackCall());
if (!ACS.getCalledFunction())
continue;
for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
if (ACS.getCallArgOperandNo(u) != ArgNo)
continue;
assert(ACS.getCalledFunction()->arg_size() > u &&
"ACS mapped into var-args arguments!");
if (CBCandidateArg) {
CBCandidateArg = nullptr;
break;
}
CBCandidateArg = ACS.getCalledFunction()->getArg(u);
}
}
if (CBCandidateArg && CBCandidateArg.value())
return CBCandidateArg.value();
const Function *Callee = CB.getCalledFunction();
if (Callee && Callee->arg_size() > unsigned(ArgNo))
return Callee->getArg(ArgNo);
return nullptr;
}
ChangeStatus AbstractAttribute::update(Attributor &A) {
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
if (getState().isAtFixpoint())
return HasChanged;
LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
HasChanged = updateImpl(A);
LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
<< "\n");
return HasChanged;
}
ChangeStatus
IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
const ArrayRef<Attribute> &DeducedAttrs,
bool ForceReplace) {
Function *ScopeFn = IRP.getAnchorScope();
IRPosition::Kind PK = IRP.getPositionKind();
AttributeList Attrs;
switch (PK) {
case IRPosition::IRP_INVALID:
case IRPosition::IRP_FLOAT:
return ChangeStatus::UNCHANGED;
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_FUNCTION:
case IRPosition::IRP_RETURNED:
Attrs = ScopeFn->getAttributes();
break;
case IRPosition::IRP_CALL_SITE:
case IRPosition::IRP_CALL_SITE_RETURNED:
case IRPosition::IRP_CALL_SITE_ARGUMENT:
Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
break;
}
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
LLVMContext &Ctx = IRP.getAnchorValue().getContext();
for (const Attribute &Attr : DeducedAttrs) {
if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx(), ForceReplace))
continue;
HasChanged = ChangeStatus::CHANGED;
}
if (HasChanged == ChangeStatus::UNCHANGED)
return HasChanged;
switch (PK) {
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_FUNCTION:
case IRPosition::IRP_RETURNED:
ScopeFn->setAttributes(Attrs);
break;
case IRPosition::IRP_CALL_SITE:
case IRPosition::IRP_CALL_SITE_RETURNED:
case IRPosition::IRP_CALL_SITE_ARGUMENT:
cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
break;
case IRPosition::IRP_INVALID:
case IRPosition::IRP_FLOAT:
break;
}
return HasChanged;
}
const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
const IRPosition
IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
IRPositions.emplace_back(IRP);
auto CanIgnoreOperandBundles = [](const CallBase &CB) {
return (isa<IntrinsicInst>(CB) &&
cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
};
const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
switch (IRP.getPositionKind()) {
case IRPosition::IRP_INVALID:
case IRPosition::IRP_FLOAT:
case IRPosition::IRP_FUNCTION:
return;
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_RETURNED:
IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
return;
case IRPosition::IRP_CALL_SITE:
assert(CB && "Expected call site!");
if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
if (const Function *Callee = CB->getCalledFunction())
IRPositions.emplace_back(IRPosition::function(*Callee));
return;
case IRPosition::IRP_CALL_SITE_RETURNED:
assert(CB && "Expected call site!");
if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
if (const Function *Callee = CB->getCalledFunction()) {
IRPositions.emplace_back(IRPosition::returned(*Callee));
IRPositions.emplace_back(IRPosition::function(*Callee));
for (const Argument &Arg : Callee->args())
if (Arg.hasReturnedAttr()) {
IRPositions.emplace_back(
IRPosition::callsite_argument(*CB, Arg.getArgNo()));
IRPositions.emplace_back(
IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
IRPositions.emplace_back(IRPosition::argument(Arg));
}
}
}
IRPositions.emplace_back(IRPosition::callsite_function(*CB));
return;
case IRPosition::IRP_CALL_SITE_ARGUMENT: {
assert(CB && "Expected call site!");
if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
const Function *Callee = CB->getCalledFunction();
if (Callee) {
if (Argument *Arg = IRP.getAssociatedArgument())
IRPositions.emplace_back(IRPosition::argument(*Arg));
IRPositions.emplace_back(IRPosition::function(*Callee));
}
}
IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
return;
}
}
}
bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
bool IgnoreSubsumingPositions, Attributor *A) const {
SmallVector<Attribute, 4> Attrs;
for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
for (Attribute::AttrKind AK : AKs)
if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
return true;
if (IgnoreSubsumingPositions)
break;
}
if (A)
for (Attribute::AttrKind AK : AKs)
if (getAttrsFromAssumes(AK, Attrs, *A))
return true;
return false;
}
void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
SmallVectorImpl<Attribute> &Attrs,
bool IgnoreSubsumingPositions, Attributor *A) const {
for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
for (Attribute::AttrKind AK : AKs)
EquivIRP.getAttrsFromIRAttr(AK, Attrs);
if (IgnoreSubsumingPositions)
break;
}
if (A)
for (Attribute::AttrKind AK : AKs)
getAttrsFromAssumes(AK, Attrs, *A);
}
bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
SmallVectorImpl<Attribute> &Attrs) const {
if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
return false;
AttributeList AttrList;
if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
AttrList = CB->getAttributes();
else
AttrList = getAssociatedFunction()->getAttributes();
bool HasAttr = AttrList.hasAttributeAtIndex(getAttrIdx(), AK);
if (HasAttr)
Attrs.push_back(AttrList.getAttributeAtIndex(getAttrIdx(), AK));
return HasAttr;
}
bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
SmallVectorImpl<Attribute> &Attrs,
Attributor &A) const {
assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!");
Value &AssociatedValue = getAssociatedValue();
const Assume2KnowledgeMap &A2K =
A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
if (A2K.empty())
return false;
LLVMContext &Ctx = AssociatedValue.getContext();
unsigned AttrsSize = Attrs.size();
MustBeExecutedContextExplorer &Explorer =
A.getInfoCache().getMustBeExecutedContextExplorer();
auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
for (auto &It : A2K)
if (Explorer.findInContextOf(It.first, EIt, EEnd))
Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
return AttrsSize != Attrs.size();
}
void IRPosition::verify() {
#ifdef EXPENSIVE_CHECKS
switch (getPositionKind()) {
case IRP_INVALID:
assert((CBContext == nullptr) &&
"Invalid position must not have CallBaseContext!");
assert(!Enc.getOpaqueValue() &&
"Expected a nullptr for an invalid position!");
return;
case IRP_FLOAT:
assert((!isa<Argument>(&getAssociatedValue())) &&
"Expected specialized kind for argument values!");
return;
case IRP_RETURNED:
assert(isa<Function>(getAsValuePtr()) &&
"Expected function for a 'returned' position!");
assert(getAsValuePtr() == &getAssociatedValue() &&
"Associated value mismatch!");
return;
case IRP_CALL_SITE_RETURNED:
assert((CBContext == nullptr) &&
"'call site returned' position must not have CallBaseContext!");
assert((isa<CallBase>(getAsValuePtr())) &&
"Expected call base for 'call site returned' position!");
assert(getAsValuePtr() == &getAssociatedValue() &&
"Associated value mismatch!");
return;
case IRP_CALL_SITE:
assert((CBContext == nullptr) &&
"'call site function' position must not have CallBaseContext!");
assert((isa<CallBase>(getAsValuePtr())) &&
"Expected call base for 'call site function' position!");
assert(getAsValuePtr() == &getAssociatedValue() &&
"Associated value mismatch!");
return;
case IRP_FUNCTION:
assert(isa<Function>(getAsValuePtr()) &&
"Expected function for a 'function' position!");
assert(getAsValuePtr() == &getAssociatedValue() &&
"Associated value mismatch!");
return;
case IRP_ARGUMENT:
assert(isa<Argument>(getAsValuePtr()) &&
"Expected argument for a 'argument' position!");
assert(getAsValuePtr() == &getAssociatedValue() &&
"Associated value mismatch!");
return;
case IRP_CALL_SITE_ARGUMENT: {
assert((CBContext == nullptr) &&
"'call site argument' position must not have CallBaseContext!");
Use *U = getAsUsePtr();
(void)U; assert(U && "Expected use for a 'call site argument' position!");
assert(isa<CallBase>(U->getUser()) &&
"Expected call base user for a 'call site argument' position!");
assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
"Expected call base argument operand for a 'call site argument' "
"position");
assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
unsigned(getCallSiteArgNo()) &&
"Argument number mismatch!");
assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
return;
}
}
#endif
}
Optional<Constant *>
Attributor::getAssumedConstant(const IRPosition &IRP,
const AbstractAttribute &AA,
bool &UsedAssumedInformation) {
for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
Optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
if (!SimplifiedV)
return llvm::None;
if (isa_and_nonnull<Constant>(*SimplifiedV))
return cast<Constant>(*SimplifiedV);
return nullptr;
}
if (auto *C = dyn_cast<Constant>(&IRP.getAssociatedValue()))
return C;
SmallVector<AA::ValueAndContext> Values;
if (getAssumedSimplifiedValues(IRP, &AA, Values,
AA::ValueScope::Interprocedural,
UsedAssumedInformation)) {
if (Values.empty())
return llvm::None;
if (auto *C = dyn_cast_or_null<Constant>(
AAPotentialValues::getSingleValue(*this, AA, IRP, Values)))
return C;
}
return nullptr;
}
Optional<Value *> Attributor::getAssumedSimplified(const IRPosition &IRP,
const AbstractAttribute *AA,
bool &UsedAssumedInformation,
AA::ValueScope S) {
for (auto &CB : SimplificationCallbacks.lookup(IRP))
return CB(IRP, AA, UsedAssumedInformation);
SmallVector<AA::ValueAndContext> Values;
if (!getAssumedSimplifiedValues(IRP, AA, Values, S, UsedAssumedInformation))
return &IRP.getAssociatedValue();
if (Values.empty())
return llvm::None;
if (AA)
if (Value *V = AAPotentialValues::getSingleValue(*this, *AA, IRP, Values))
return V;
if (IRP.getPositionKind() == IRPosition::IRP_RETURNED ||
IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_RETURNED)
return nullptr;
return &IRP.getAssociatedValue();
}
bool Attributor::getAssumedSimplifiedValues(
const IRPosition &IRP, const AbstractAttribute *AA,
SmallVectorImpl<AA::ValueAndContext> &Values, AA::ValueScope S,
bool &UsedAssumedInformation) {
const auto &SimplificationCBs = SimplificationCallbacks.lookup(IRP);
for (auto &CB : SimplificationCBs) {
Optional<Value *> CBResult = CB(IRP, AA, UsedAssumedInformation);
if (!CBResult.has_value())
continue;
Value *V = CBResult.value();
if (!V)
return false;
if ((S & AA::ValueScope::Interprocedural) ||
AA::isValidInScope(*V, IRP.getAnchorScope()))
Values.push_back(AA::ValueAndContext{*V, nullptr});
else
return false;
}
if (!SimplificationCBs.empty())
return true;
const auto &PotentialValuesAA =
getOrCreateAAFor<AAPotentialValues>(IRP, AA, DepClassTy::OPTIONAL);
if (!PotentialValuesAA.getAssumedSimplifiedValues(*this, Values, S))
return false;
UsedAssumedInformation |= !PotentialValuesAA.isAtFixpoint();
return true;
}
Optional<Value *> Attributor::translateArgumentToCallSiteContent(
Optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
bool &UsedAssumedInformation) {
if (!V)
return V;
if (*V == nullptr || isa<Constant>(*V))
return V;
if (auto *Arg = dyn_cast<Argument>(*V))
if (CB.getCalledFunction() == Arg->getParent())
if (!Arg->hasPointeeInMemoryValueAttr())
return getAssumedSimplified(
IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
UsedAssumedInformation, AA::Intraprocedural);
return nullptr;
}
Attributor::~Attributor() {
for (auto &DepAA : DG.SyntheticRoot.Deps) {
AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
AA->~AbstractAttribute();
}
}
bool Attributor::isAssumedDead(const AbstractAttribute &AA,
const AAIsDead *FnLivenessAA,
bool &UsedAssumedInformation,
bool CheckBBLivenessOnly, DepClassTy DepClass) {
const IRPosition &IRP = AA.getIRPosition();
if (!Functions.count(IRP.getAnchorScope()))
return false;
return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
CheckBBLivenessOnly, DepClass);
}
bool Attributor::isAssumedDead(const Use &U,
const AbstractAttribute *QueryingAA,
const AAIsDead *FnLivenessAA,
bool &UsedAssumedInformation,
bool CheckBBLivenessOnly, DepClassTy DepClass) {
Instruction *UserI = dyn_cast<Instruction>(U.getUser());
if (!UserI)
return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
if (auto *CB = dyn_cast<CallBase>(UserI)) {
if (CB->isArgOperand(&U)) {
const IRPosition &CSArgPos =
IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
UsedAssumedInformation, CheckBBLivenessOnly,
DepClass);
}
} else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
} else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
} else if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
if (!CheckBBLivenessOnly && SI->getPointerOperand() != U.get()) {
const IRPosition IRP = IRPosition::inst(*SI);
const AAIsDead &IsDeadAA =
getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
if (IsDeadAA.isRemovableStore()) {
if (QueryingAA)
recordDependence(IsDeadAA, *QueryingAA, DepClass);
if (!IsDeadAA.isKnown(AAIsDead::IS_REMOVABLE))
UsedAssumedInformation = true;
return true;
}
}
}
return isAssumedDead(IRPosition::inst(*UserI), QueryingAA, FnLivenessAA,
UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
}
bool Attributor::isAssumedDead(const Instruction &I,
const AbstractAttribute *QueryingAA,
const AAIsDead *FnLivenessAA,
bool &UsedAssumedInformation,
bool CheckBBLivenessOnly, DepClassTy DepClass) {
const IRPosition::CallBaseContext *CBCtx =
QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
if (ManifestAddedBlocks.contains(I.getParent()))
return false;
if (!FnLivenessAA)
FnLivenessAA =
lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
QueryingAA, DepClassTy::NONE);
if (FnLivenessAA &&
FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
(CheckBBLivenessOnly ? FnLivenessAA->isAssumedDead(I.getParent())
: FnLivenessAA->isAssumedDead(&I))) {
if (QueryingAA)
recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
if (!FnLivenessAA->isKnownDead(&I))
UsedAssumedInformation = true;
return true;
}
if (CheckBBLivenessOnly)
return false;
const IRPosition IRP = IRPosition::inst(I, CBCtx);
const AAIsDead &IsDeadAA =
getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
if (QueryingAA == &IsDeadAA)
return false;
if (IsDeadAA.isAssumedDead()) {
if (QueryingAA)
recordDependence(IsDeadAA, *QueryingAA, DepClass);
if (!IsDeadAA.isKnownDead())
UsedAssumedInformation = true;
return true;
}
return false;
}
bool Attributor::isAssumedDead(const IRPosition &IRP,
const AbstractAttribute *QueryingAA,
const AAIsDead *FnLivenessAA,
bool &UsedAssumedInformation,
bool CheckBBLivenessOnly, DepClassTy DepClass) {
Instruction *CtxI = IRP.getCtxI();
if (CtxI &&
isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
true,
CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
return true;
if (CheckBBLivenessOnly)
return false;
const AAIsDead *IsDeadAA;
if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
IsDeadAA = &getOrCreateAAFor<AAIsDead>(
IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
QueryingAA, DepClassTy::NONE);
else
IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
if (QueryingAA == IsDeadAA)
return false;
if (IsDeadAA->isAssumedDead()) {
if (QueryingAA)
recordDependence(*IsDeadAA, *QueryingAA, DepClass);
if (!IsDeadAA->isKnownDead())
UsedAssumedInformation = true;
return true;
}
return false;
}
bool Attributor::isAssumedDead(const BasicBlock &BB,
const AbstractAttribute *QueryingAA,
const AAIsDead *FnLivenessAA,
DepClassTy DepClass) {
if (!FnLivenessAA)
FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*BB.getParent()),
QueryingAA, DepClassTy::NONE);
if (FnLivenessAA->isAssumedDead(&BB)) {
if (QueryingAA)
recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
return true;
}
return false;
}
bool Attributor::checkForAllUses(
function_ref<bool(const Use &, bool &)> Pred,
const AbstractAttribute &QueryingAA, const Value &V,
bool CheckBBLivenessOnly, DepClassTy LivenessDepClass,
bool IgnoreDroppableUses,
function_ref<bool(const Use &OldU, const Use &NewU)> EquivalentUseCB) {
if (V.use_empty())
return true;
const IRPosition &IRP = QueryingAA.getIRPosition();
SmallVector<const Use *, 16> Worklist;
SmallPtrSet<const Use *, 16> Visited;
auto AddUsers = [&](const Value &V, const Use *OldUse) {
for (const Use &UU : V.uses()) {
if (OldUse && EquivalentUseCB && !EquivalentUseCB(*OldUse, UU)) {
LLVM_DEBUG(dbgs() << "[Attributor] Potential copy was "
"rejected by the equivalence call back: "
<< *UU << "!\n");
return false;
}
Worklist.push_back(&UU);
}
return true;
};
AddUsers(V, nullptr);
LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
<< " initial uses to check\n");
const Function *ScopeFn = IRP.getAnchorScope();
const auto *LivenessAA =
ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
DepClassTy::NONE)
: nullptr;
while (!Worklist.empty()) {
const Use *U = Worklist.pop_back_val();
if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
continue;
LLVM_DEBUG({
if (auto *Fn = dyn_cast<Function>(U->getUser()))
dbgs() << "[Attributor] Check use: " << **U << " in " << Fn->getName()
<< "\n";
else
dbgs() << "[Attributor] Check use: " << **U << " in " << *U->getUser()
<< "\n";
});
bool UsedAssumedInformation = false;
if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
CheckBBLivenessOnly, LivenessDepClass)) {
LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
continue;
}
if (IgnoreDroppableUses && U->getUser()->isDroppable()) {
LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n");
continue;
}
if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
if (&SI->getOperandUse(0) == U) {
if (!Visited.insert(U).second)
continue;
SmallSetVector<Value *, 4> PotentialCopies;
if (AA::getPotentialCopiesOfStoredValue(
*this, *SI, PotentialCopies, QueryingAA, UsedAssumedInformation,
true)) {
LLVM_DEBUG(dbgs() << "[Attributor] Value is stored, continue with "
<< PotentialCopies.size()
<< " potential copies instead!\n");
for (Value *PotentialCopy : PotentialCopies)
if (!AddUsers(*PotentialCopy, U))
return false;
continue;
}
}
}
bool Follow = false;
if (!Pred(*U, Follow))
return false;
if (!Follow)
continue;
User &Usr = *U->getUser();
AddUsers(Usr, nullptr);
auto *RI = dyn_cast<ReturnInst>(&Usr);
if (!RI)
continue;
Function &F = *RI->getFunction();
auto CallSitePred = [&](AbstractCallSite ACS) {
return AddUsers(*ACS.getInstruction(), U);
};
if (!checkForAllCallSites(CallSitePred, F, true,
&QueryingAA, UsedAssumedInformation)) {
LLVM_DEBUG(dbgs() << "[Attributor] Could not follow return instruction "
"to all call sites: "
<< *RI << "\n");
return false;
}
}
return true;
}
bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
const AbstractAttribute &QueryingAA,
bool RequireAllCallSites,
bool &UsedAssumedInformation) {
const IRPosition &IRP = QueryingAA.getIRPosition();
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction) {
LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
<< "\n");
return false;
}
return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
&QueryingAA, UsedAssumedInformation);
}
bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
const Function &Fn,
bool RequireAllCallSites,
const AbstractAttribute *QueryingAA,
bool &UsedAssumedInformation) {
if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
LLVM_DEBUG(
dbgs()
<< "[Attributor] Function " << Fn.getName()
<< " has no internal linkage, hence not all call sites are known\n");
return false;
}
SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
for (unsigned u = 0; u < Uses.size(); ++u) {
const Use &U = *Uses[u];
LLVM_DEBUG({
if (auto *Fn = dyn_cast<Function>(U))
dbgs() << "[Attributor] Check use: " << Fn->getName() << " in "
<< *U.getUser() << "\n";
else
dbgs() << "[Attributor] Check use: " << *U << " in " << *U.getUser()
<< "\n";
});
if (isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
true)) {
LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n");
continue;
}
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
if (CE->isCast() && CE->getType()->isPointerTy()) {
LLVM_DEBUG(
dbgs() << "[Attributor] Use, is constant cast expression, add "
<< CE->getNumUses()
<< " uses of that expression instead!\n");
for (const Use &CEU : CE->uses())
Uses.push_back(&CEU);
continue;
}
}
AbstractCallSite ACS(&U);
if (!ACS) {
LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
<< " has non call site use " << *U.get() << " in "
<< *U.getUser() << "\n");
if (isa<BlockAddress>(U.getUser()))
continue;
return false;
}
const Use *EffectiveUse =
ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
if (!ACS.isCallee(EffectiveUse)) {
if (!RequireAllCallSites) {
LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
<< " is not a call of " << Fn.getName()
<< ", skip use\n");
continue;
}
LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
<< " is an invalid use of " << Fn.getName() << "\n");
return false;
}
assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
unsigned MinArgsParams =
std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
for (unsigned u = 0; u < MinArgsParams; ++u) {
Value *CSArgOp = ACS.getCallArgOperand(u);
if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
LLVM_DEBUG(
dbgs() << "[Attributor] Call site / callee argument type mismatch ["
<< u << "@" << Fn.getName() << ": "
<< *Fn.getArg(u)->getType() << " vs. "
<< *ACS.getCallArgOperand(u)->getType() << "\n");
return false;
}
}
if (Pred(ACS))
continue;
LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
<< *ACS.getInstruction() << "\n");
return false;
}
return true;
}
bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
return EnableCallSiteSpecific;
}
bool Attributor::checkForAllReturnedValuesAndReturnInsts(
function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
const AbstractAttribute &QueryingAA) {
const IRPosition &IRP = QueryingAA.getIRPosition();
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction)
return false;
const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
const auto &AARetVal =
getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
if (!AARetVal.getState().isValidState())
return false;
return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
}
bool Attributor::checkForAllReturnedValues(
function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
const IRPosition &IRP = QueryingAA.getIRPosition();
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction)
return false;
const IRPosition &QueryIRP = IRPosition::function(
*AssociatedFunction, QueryingAA.getCallBaseContext());
const auto &AARetVal =
getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
if (!AARetVal.getState().isValidState())
return false;
return AARetVal.checkForAllReturnedValuesAndReturnInsts(
[&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
return Pred(RV);
});
}
static bool checkForAllInstructionsImpl(
Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
bool CheckPotentiallyDead = false) {
for (unsigned Opcode : Opcodes) {
auto *Insts = OpcodeInstMap.lookup(Opcode);
if (!Insts)
continue;
for (Instruction *I : *Insts) {
if (A && !CheckPotentiallyDead &&
A->isAssumedDead(IRPosition::inst(*I), QueryingAA, LivenessAA,
UsedAssumedInformation, CheckBBLivenessOnly)) {
LLVM_DEBUG(dbgs() << "[Attributor] Instruction " << *I
<< " is potentially dead, skip!\n";);
continue;
}
if (!Pred(*I))
return false;
}
}
return true;
}
bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
const Function *Fn,
const AbstractAttribute &QueryingAA,
const ArrayRef<unsigned> &Opcodes,
bool &UsedAssumedInformation,
bool CheckBBLivenessOnly,
bool CheckPotentiallyDead) {
if (!Fn || Fn->isDeclaration())
return false;
const IRPosition &QueryIRP = IRPosition::function(*Fn);
const auto *LivenessAA =
(CheckBBLivenessOnly || CheckPotentiallyDead)
? nullptr
: &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
LivenessAA, Opcodes, UsedAssumedInformation,
CheckBBLivenessOnly, CheckPotentiallyDead))
return false;
return true;
}
bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
const AbstractAttribute &QueryingAA,
const ArrayRef<unsigned> &Opcodes,
bool &UsedAssumedInformation,
bool CheckBBLivenessOnly,
bool CheckPotentiallyDead) {
const IRPosition &IRP = QueryingAA.getIRPosition();
const Function *AssociatedFunction = IRP.getAssociatedFunction();
return checkForAllInstructions(Pred, AssociatedFunction, QueryingAA, Opcodes,
UsedAssumedInformation, CheckBBLivenessOnly,
CheckPotentiallyDead);
}
bool Attributor::checkForAllReadWriteInstructions(
function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
bool &UsedAssumedInformation) {
const Function *AssociatedFunction =
QueryingAA.getIRPosition().getAssociatedFunction();
if (!AssociatedFunction)
return false;
const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
const auto &LivenessAA =
getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
for (Instruction *I :
InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
if (isAssumedDead(IRPosition::inst(*I), &QueryingAA, &LivenessAA,
UsedAssumedInformation))
continue;
if (!Pred(*I))
return false;
}
return true;
}
void Attributor::runTillFixpoint() {
TimeTraceScope TimeScope("Attributor::runTillFixpoint");
LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
<< DG.SyntheticRoot.Deps.size()
<< " abstract attributes.\n");
unsigned IterationCounter = 1;
unsigned MaxIterations =
Configuration.MaxFixpointIterations.value_or(SetFixpointIterations);
SmallVector<AbstractAttribute *, 32> ChangedAAs;
SetVector<AbstractAttribute *> Worklist, InvalidAAs;
Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
do {
size_t NumAAs = DG.SyntheticRoot.Deps.size();
LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
<< ", Worklist size: " << Worklist.size() << "\n");
for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
AbstractAttribute *InvalidAA = InvalidAAs[u];
LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "
<< InvalidAA->Deps.size()
<< " required & optional dependences\n");
while (!InvalidAA->Deps.empty()) {
const auto &Dep = InvalidAA->Deps.back();
InvalidAA->Deps.pop_back();
AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
LLVM_DEBUG(dbgs() << " - recompute: " << *DepAA);
Worklist.insert(DepAA);
continue;
}
LLVM_DEBUG(dbgs() << " - invalidate: " << *DepAA);
DepAA->getState().indicatePessimisticFixpoint();
assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
if (!DepAA->getState().isValidState())
InvalidAAs.insert(DepAA);
else
ChangedAAs.push_back(DepAA);
}
}
for (AbstractAttribute *ChangedAA : ChangedAAs)
while (!ChangedAA->Deps.empty()) {
Worklist.insert(
cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
ChangedAA->Deps.pop_back();
}
LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
<< ", Worklist+Dependent size: " << Worklist.size()
<< "\n");
ChangedAAs.clear();
InvalidAAs.clear();
for (AbstractAttribute *AA : Worklist) {
const auto &AAState = AA->getState();
if (!AAState.isAtFixpoint())
if (updateAA(*AA) == ChangeStatus::CHANGED)
ChangedAAs.push_back(AA);
if (!AAState.isValidState())
InvalidAAs.insert(AA);
}
ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
DG.SyntheticRoot.end());
Worklist.clear();
Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
Worklist.insert(QueryAAsAwaitingUpdate.begin(),
QueryAAsAwaitingUpdate.end());
QueryAAsAwaitingUpdate.clear();
} while (!Worklist.empty() &&
(IterationCounter++ < MaxIterations || VerifyMaxFixpointIterations));
if (IterationCounter > MaxIterations && !Functions.empty()) {
auto Remark = [&](OptimizationRemarkMissed ORM) {
return ORM << "Attributor did not reach a fixpoint after "
<< ore::NV("Iterations", MaxIterations) << " iterations.";
};
Function *F = Functions.front();
emitRemark<OptimizationRemarkMissed>(F, "FixedPoint", Remark);
}
LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
<< IterationCounter << "/" << MaxIterations
<< " iterations\n");
SmallPtrSet<AbstractAttribute *, 32> Visited;
for (unsigned u = 0; u < ChangedAAs.size(); u++) {
AbstractAttribute *ChangedAA = ChangedAAs[u];
if (!Visited.insert(ChangedAA).second)
continue;
AbstractState &State = ChangedAA->getState();
if (!State.isAtFixpoint()) {
State.indicatePessimisticFixpoint();
NumAttributesTimedOut++;
}
while (!ChangedAA->Deps.empty()) {
ChangedAAs.push_back(
cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
ChangedAA->Deps.pop_back();
}
}
LLVM_DEBUG({
if (!Visited.empty())
dbgs() << "\n[Attributor] Finalized " << Visited.size()
<< " abstract attributes.\n";
});
if (VerifyMaxFixpointIterations && IterationCounter != MaxIterations) {
errs() << "\n[Attributor] Fixpoint iteration done after: "
<< IterationCounter << "/" << MaxIterations << " iterations\n";
llvm_unreachable("The fixpoint was not reached with exactly the number of "
"specified iterations!");
}
}
void Attributor::registerForUpdate(AbstractAttribute &AA) {
assert(AA.isQueryAA() &&
"Non-query AAs should not be required to register for updates!");
QueryAAsAwaitingUpdate.insert(&AA);
}
ChangeStatus Attributor::manifestAttributes() {
TimeTraceScope TimeScope("Attributor::manifestAttributes");
size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
unsigned NumManifested = 0;
unsigned NumAtFixpoint = 0;
ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
for (auto &DepAA : DG.SyntheticRoot.Deps) {
AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
AbstractState &State = AA->getState();
if (!State.isAtFixpoint())
State.indicateOptimisticFixpoint();
if (AA->hasCallBaseContext())
continue;
if (!State.isValidState())
continue;
if (AA->getCtxI() && !isRunOn(*AA->getAnchorScope()))
continue;
bool UsedAssumedInformation = false;
if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
true))
continue;
if (!DebugCounter::shouldExecute(ManifestDBGCounter))
continue;
ChangeStatus LocalChange = AA->manifest(*this);
if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
AA->trackStatistics();
LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
<< "\n");
ManifestChange = ManifestChange | LocalChange;
NumAtFixpoint++;
NumManifested += (LocalChange == ChangeStatus::CHANGED);
}
(void)NumManifested;
(void)NumAtFixpoint;
LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
<< " arguments while " << NumAtFixpoint
<< " were in a valid fixpoint state\n");
NumAttributesManifested += NumManifested;
NumAttributesValidFixpoint += NumAtFixpoint;
(void)NumFinalAAs;
if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
errs() << "Unexpected abstract attribute: "
<< cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
<< " :: "
<< cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
->getIRPosition()
.getAssociatedValue()
<< "\n";
llvm_unreachable("Expected the final number of abstract attributes to "
"remain unchanged!");
}
return ManifestChange;
}
void Attributor::identifyDeadInternalFunctions() {
if (!Configuration.DeleteFns)
return;
SmallVector<Function *, 8> InternalFns;
for (Function *F : Functions)
if (F->hasLocalLinkage())
InternalFns.push_back(F);
SmallPtrSet<Function *, 8> LiveInternalFns;
bool FoundLiveInternal = true;
while (FoundLiveInternal) {
FoundLiveInternal = false;
for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
Function *F = InternalFns[u];
if (!F)
continue;
bool UsedAssumedInformation = false;
if (checkForAllCallSites(
[&](AbstractCallSite ACS) {
Function *Callee = ACS.getInstruction()->getFunction();
return ToBeDeletedFunctions.count(Callee) ||
(Functions.count(Callee) && Callee->hasLocalLinkage() &&
!LiveInternalFns.count(Callee));
},
*F, true, nullptr, UsedAssumedInformation)) {
continue;
}
LiveInternalFns.insert(F);
InternalFns[u] = nullptr;
FoundLiveInternal = true;
}
}
for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
if (Function *F = InternalFns[u])
ToBeDeletedFunctions.insert(F);
}
ChangeStatus Attributor::cleanupIR() {
TimeTraceScope TimeScope("Attributor::cleanupIR");
LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
<< ToBeDeletedFunctions.size() << " functions and "
<< ToBeDeletedBlocks.size() << " blocks and "
<< ToBeDeletedInsts.size() << " instructions and "
<< ToBeChangedValues.size() << " values and "
<< ToBeChangedUses.size() << " uses. To insert "
<< ToBeChangedToUnreachableInsts.size()
<< " unreachables.\n"
<< "Preserve manifest added " << ManifestAddedBlocks.size()
<< " blocks\n");
SmallVector<WeakTrackingVH, 32> DeadInsts;
SmallVector<Instruction *, 32> TerminatorsToFold;
auto ReplaceUse = [&](Use *U, Value *NewV) {
Value *OldV = U->get();
do {
const auto &Entry = ToBeChangedValues.lookup(NewV);
if (!Entry.first)
break;
NewV = Entry.first;
} while (true);
Instruction *I = dyn_cast<Instruction>(U->getUser());
assert((!I || isRunOn(*I->getFunction())) &&
"Cannot replace an instruction outside the current SCC!");
if (auto *RI = dyn_cast_or_null<ReturnInst>(I)) {
if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
return;
if (!isa<Argument>(NewV))
for (auto &Arg : RI->getFunction()->args())
Arg.removeAttr(Attribute::Returned);
}
if (auto *CB = dyn_cast_or_null<CallBase>(I))
if (CB->isCallee(U))
return;
LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
<< " instead of " << *OldV << "\n");
U->set(NewV);
if (Instruction *I = dyn_cast<Instruction>(OldV)) {
CGModifiedFunctions.insert(I->getFunction());
if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
isInstructionTriviallyDead(I))
DeadInsts.push_back(I);
}
if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
auto *CB = cast<CallBase>(U->getUser());
if (CB->isArgOperand(U)) {
unsigned Idx = CB->getArgOperandNo(U);
CB->removeParamAttr(Idx, Attribute::NoUndef);
Function *Fn = CB->getCalledFunction();
if (Fn && Fn->arg_size() > Idx)
Fn->removeParamAttr(Idx, Attribute::NoUndef);
}
}
if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
Instruction *UserI = cast<Instruction>(U->getUser());
if (isa<UndefValue>(NewV)) {
ToBeChangedToUnreachableInsts.insert(UserI);
} else {
TerminatorsToFold.push_back(UserI);
}
}
};
for (auto &It : ToBeChangedUses) {
Use *U = It.first;
Value *NewV = It.second;
ReplaceUse(U, NewV);
}
SmallVector<Use *, 4> Uses;
for (auto &It : ToBeChangedValues) {
Value *OldV = It.first;
auto &Entry = It.second;
Value *NewV = Entry.first;
Uses.clear();
for (auto &U : OldV->uses())
if (Entry.second || !U.getUser()->isDroppable())
Uses.push_back(&U);
for (Use *U : Uses) {
if (auto *I = dyn_cast<Instruction>(U->getUser()))
if (!isRunOn(*I->getFunction()))
continue;
ReplaceUse(U, NewV);
}
}
for (auto &V : InvokeWithDeadSuccessor)
if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
assert(isRunOn(*II->getFunction()) &&
"Cannot replace an invoke outside the current SCC!");
bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
bool Invoke2CallAllowed =
!AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
assert((UnwindBBIsDead || NormalBBIsDead) &&
"Invoke does not have dead successors!");
BasicBlock *BB = II->getParent();
BasicBlock *NormalDestBB = II->getNormalDest();
if (UnwindBBIsDead) {
Instruction *NormalNextIP = &NormalDestBB->front();
if (Invoke2CallAllowed) {
changeToCall(II);
NormalNextIP = BB->getTerminator();
}
if (NormalBBIsDead)
ToBeChangedToUnreachableInsts.insert(NormalNextIP);
} else {
assert(NormalBBIsDead && "Broken invariant!");
if (!NormalDestBB->getUniquePredecessor())
NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
}
}
for (Instruction *I : TerminatorsToFold) {
assert(isRunOn(*I->getFunction()) &&
"Cannot replace a terminator outside the current SCC!");
CGModifiedFunctions.insert(I->getFunction());
ConstantFoldTerminator(I->getParent());
}
for (auto &V : ToBeChangedToUnreachableInsts)
if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
LLVM_DEBUG(dbgs() << "[Attributor] Change to unreachable: " << *I
<< "\n");
assert(isRunOn(*I->getFunction()) &&
"Cannot replace an instruction outside the current SCC!");
CGModifiedFunctions.insert(I->getFunction());
changeToUnreachable(I);
}
for (auto &V : ToBeDeletedInsts) {
if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
if (auto *CB = dyn_cast<CallBase>(I)) {
assert(isRunOn(*I->getFunction()) &&
"Cannot delete an instruction outside the current SCC!");
if (!isa<IntrinsicInst>(CB))
Configuration.CGUpdater.removeCallSite(*CB);
}
I->dropDroppableUses();
CGModifiedFunctions.insert(I->getFunction());
if (!I->getType()->isVoidTy())
I->replaceAllUsesWith(UndefValue::get(I->getType()));
if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
DeadInsts.push_back(I);
else
I->eraseFromParent();
}
}
llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) { return !I; });
LLVM_DEBUG({
dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
for (auto &I : DeadInsts)
if (I)
dbgs() << " - " << *I << "\n";
});
RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
ToBeDeletedBBs.reserve(NumDeadBlocks);
for (BasicBlock *BB : ToBeDeletedBlocks) {
assert(isRunOn(*BB->getParent()) &&
"Cannot delete a block outside the current SCC!");
CGModifiedFunctions.insert(BB->getParent());
if (ManifestAddedBlocks.contains(BB))
continue;
ToBeDeletedBBs.push_back(BB);
}
detachDeadBlocks(ToBeDeletedBBs, nullptr);
}
identifyDeadInternalFunctions();
ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
for (Function *Fn : CGModifiedFunctions)
if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
Configuration.CGUpdater.reanalyzeFunction(*Fn);
for (Function *Fn : ToBeDeletedFunctions) {
if (!Functions.count(Fn))
continue;
Configuration.CGUpdater.removeFunction(*Fn);
}
if (!ToBeChangedUses.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!ToBeChangedToUnreachableInsts.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!ToBeDeletedFunctions.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!ToBeDeletedBlocks.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!ToBeDeletedInsts.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!InvokeWithDeadSuccessor.empty())
ManifestChange = ChangeStatus::CHANGED;
if (!DeadInsts.empty())
ManifestChange = ChangeStatus::CHANGED;
NumFnDeleted += ToBeDeletedFunctions.size();
LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
<< " functions after manifest.\n");
#ifdef EXPENSIVE_CHECKS
for (Function *F : Functions) {
if (ToBeDeletedFunctions.count(F))
continue;
assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
}
#endif
return ManifestChange;
}
ChangeStatus Attributor::run() {
TimeTraceScope TimeScope("Attributor::run");
AttributorCallGraph ACallGraph(*this);
if (PrintCallGraph)
ACallGraph.populateAll();
Phase = AttributorPhase::UPDATE;
runTillFixpoint();
if (DumpDepGraph)
DG.dumpGraph();
if (ViewDepGraph)
DG.viewGraph();
if (PrintDependencies)
DG.print();
Phase = AttributorPhase::MANIFEST;
ChangeStatus ManifestChange = manifestAttributes();
Phase = AttributorPhase::CLEANUP;
ChangeStatus CleanupChange = cleanupIR();
if (PrintCallGraph)
ACallGraph.print();
return ManifestChange | CleanupChange;
}
ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
TimeTraceScope TimeScope(
AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
"::updateAA");
assert(Phase == AttributorPhase::UPDATE &&
"We can update AA only in the update stage!");
DependenceVector DV;
DependenceStack.push_back(&DV);
auto &AAState = AA.getState();
ChangeStatus CS = ChangeStatus::UNCHANGED;
bool UsedAssumedInformation = false;
if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
true))
CS = AA.update(*this);
if (!AA.isQueryAA() && DV.empty()) {
AAState.indicateOptimisticFixpoint();
}
if (!AAState.isAtFixpoint())
rememberDependences();
DependenceVector *PoppedDV = DependenceStack.pop_back_val();
(void)PoppedDV;
assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
return CS;
}
void Attributor::createShallowWrapper(Function &F) {
assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
Module &M = *F.getParent();
LLVMContext &Ctx = M.getContext();
FunctionType *FnTy = F.getFunctionType();
Function *Wrapper =
Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
F.setName(""); M.getFunctionList().insert(F.getIterator(), Wrapper);
F.setLinkage(GlobalValue::InternalLinkage);
F.replaceAllUsesWith(Wrapper);
assert(F.use_empty() && "Uses remained after wrapper was created!");
Wrapper->setComdat(F.getComdat());
F.setComdat(nullptr);
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
F.getAllMetadata(MDs);
for (auto MDIt : MDs)
Wrapper->addMetadata(MDIt.first, *MDIt.second);
Wrapper->setAttributes(F.getAttributes());
BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
SmallVector<Value *, 8> Args;
Argument *FArgIt = F.arg_begin();
for (Argument &Arg : Wrapper->args()) {
Args.push_back(&Arg);
Arg.setName((FArgIt++)->getName());
}
CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
CI->setTailCall(true);
CI->addFnAttr(Attribute::NoInline);
ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
NumFnShallowWrappersCreated++;
}
bool Attributor::isInternalizable(Function &F) {
if (F.isDeclaration() || F.hasLocalLinkage() ||
GlobalValue::isInterposableLinkage(F.getLinkage()))
return false;
return true;
}
Function *Attributor::internalizeFunction(Function &F, bool Force) {
if (!AllowDeepWrapper && !Force)
return nullptr;
if (!isInternalizable(F))
return nullptr;
SmallPtrSet<Function *, 2> FnSet = {&F};
DenseMap<Function *, Function *> InternalizedFns;
internalizeFunctions(FnSet, InternalizedFns);
return InternalizedFns[&F];
}
bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
DenseMap<Function *, Function *> &FnMap) {
for (Function *F : FnSet)
if (!Attributor::isInternalizable(*F))
return false;
FnMap.clear();
for (Function *F : FnSet) {
Module &M = *F->getParent();
FunctionType *FnTy = F->getFunctionType();
Function *Copied =
Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
F->getName() + ".internalized");
ValueToValueMapTy VMap;
auto *NewFArgIt = Copied->arg_begin();
for (auto &Arg : F->args()) {
auto ArgName = Arg.getName();
NewFArgIt->setName(ArgName);
VMap[&Arg] = &(*NewFArgIt++);
}
SmallVector<ReturnInst *, 8> Returns;
CloneFunctionInto(Copied, F, VMap,
CloneFunctionChangeType::LocalChangesOnly, Returns);
Copied->setVisibility(GlobalValue::DefaultVisibility);
Copied->setLinkage(GlobalValue::PrivateLinkage);
SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
F->getAllMetadata(MDs);
for (auto MDIt : MDs)
if (!Copied->hasMetadata())
Copied->addMetadata(MDIt.first, *MDIt.second);
M.getFunctionList().insert(F->getIterator(), Copied);
Copied->setDSOLocal(true);
FnMap[F] = Copied;
}
for (Function *F : FnSet) {
auto &InternalizedFn = FnMap[F];
auto IsNotInternalized = [&](Use &U) -> bool {
if (auto *CB = dyn_cast<CallBase>(U.getUser()))
return !FnMap.lookup(CB->getCaller());
return false;
};
F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
}
return true;
}
bool Attributor::isValidFunctionSignatureRewrite(
Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
if (!Configuration.RewriteSignatures)
return false;
Function *Fn = Arg.getParent();
auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
if (!ACS.getCalledFunction() ||
ACS.getInstruction()->getType() !=
ACS.getCalledFunction()->getReturnType())
return false;
if (ACS.getCalledOperand()->getType() != Fn->getType())
return false;
return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
};
if (Fn->isVarArg()) {
LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
return false;
}
AttributeList FnAttributeList = Fn->getAttributes();
if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
LLVM_DEBUG(
dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
return false;
}
bool UsedAssumedInformation = false;
if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
UsedAssumedInformation)) {
LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
return false;
}
auto InstPred = [](Instruction &I) {
if (auto *CI = dyn_cast<CallInst>(&I))
return !CI->isMustTailCall();
return true;
};
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
nullptr, {Instruction::Call},
UsedAssumedInformation)) {
LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
return false;
}
return true;
}
bool Attributor::registerFunctionSignatureRewrite(
Argument &Arg, ArrayRef<Type *> ReplacementTypes,
ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
<< Arg.getParent()->getName() << " with "
<< ReplacementTypes.size() << " replacements\n");
assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
"Cannot register an invalid rewrite");
Function *Fn = Arg.getParent();
SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
ArgumentReplacementMap[Fn];
if (ARIs.empty())
ARIs.resize(Fn->arg_size());
std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
return false;
}
ARI.reset();
LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
<< Arg.getParent()->getName() << " with "
<< ReplacementTypes.size() << " replacements\n");
ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
std::move(CalleeRepairCB),
std::move(ACSRepairCB)));
return true;
}
bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
bool Result = true;
#ifndef NDEBUG
if (SeedAllowList.size() != 0)
Result = llvm::is_contained(SeedAllowList, AA.getName());
Function *Fn = AA.getAnchorScope();
if (FunctionSeedAllowList.size() != 0 && Fn)
Result &= llvm::is_contained(FunctionSeedAllowList, Fn->getName());
#endif
return Result;
}
ChangeStatus Attributor::rewriteFunctionSignatures(
SmallSetVector<Function *, 8> &ModifiedFns) {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
for (auto &It : ArgumentReplacementMap) {
Function *OldFn = It.getFirst();
if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
continue;
const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
It.getSecond();
assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
SmallVector<Type *, 16> NewArgumentTypes;
SmallVector<AttributeSet, 16> NewArgumentAttributes;
AttributeList OldFnAttributeList = OldFn->getAttributes();
for (Argument &Arg : OldFn->args()) {
if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
ARIs[Arg.getArgNo()]) {
NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
ARI->ReplacementTypes.end());
NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
AttributeSet());
} else {
NewArgumentTypes.push_back(Arg.getType());
NewArgumentAttributes.push_back(
OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
}
}
uint64_t LargestVectorWidth = 0;
for (auto *I : NewArgumentTypes)
if (auto *VT = dyn_cast<llvm::VectorType>(I))
LargestVectorWidth = std::max(
LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinSize());
FunctionType *OldFnTy = OldFn->getFunctionType();
Type *RetTy = OldFnTy->getReturnType();
FunctionType *NewFnTy =
FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
<< "' from " << *OldFn->getFunctionType() << " to "
<< *NewFnTy << "\n");
Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
OldFn->getAddressSpace(), "");
Functions.insert(NewFn);
OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
NewFn->takeName(OldFn);
NewFn->copyAttributesFrom(OldFn);
NewFn->setSubprogram(OldFn->getSubprogram());
OldFn->setSubprogram(nullptr);
LLVMContext &Ctx = OldFn->getContext();
NewFn->setAttributes(AttributeList::get(
Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
NewArgumentAttributes));
AttributeFuncs::updateMinLegalVectorWidthAttr(*NewFn, LargestVectorWidth);
NewFn->getBasicBlockList().splice(NewFn->begin(),
OldFn->getBasicBlockList());
SmallVector<BlockAddress *, 8u> BlockAddresses;
for (User *U : OldFn->users())
if (auto *BA = dyn_cast<BlockAddress>(U))
BlockAddresses.push_back(BA);
for (auto *BA : BlockAddresses)
BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
const AttributeList &OldCallAttributeList = OldCB->getAttributes();
SmallVector<Value *, 16> NewArgOperands;
SmallVector<AttributeSet, 16> NewArgOperandAttributes;
for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
unsigned NewFirstArgNum = NewArgOperands.size();
(void)NewFirstArgNum; if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
ARIs[OldArgNum]) {
if (ARI->ACSRepairCB)
ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
NewArgOperands.size() &&
"ACS repair callback did not provide as many operand as new "
"types were registered!");
NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
AttributeSet());
} else {
NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
NewArgOperandAttributes.push_back(
OldCallAttributeList.getParamAttrs(OldArgNum));
}
}
assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
"Mismatch # argument operands vs. # argument operand attributes!");
assert(NewArgOperands.size() == NewFn->arg_size() &&
"Mismatch # argument operands vs. # function arguments!");
SmallVector<OperandBundleDef, 4> OperandBundleDefs;
OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
CallBase *NewCB;
if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
NewCB =
InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
NewArgOperands, OperandBundleDefs, "", OldCB);
} else {
auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
"", OldCB);
NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
NewCB = NewCI;
}
NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
NewCB->setCallingConv(OldCB->getCallingConv());
NewCB->takeName(OldCB);
NewCB->setAttributes(AttributeList::get(
Ctx, OldCallAttributeList.getFnAttrs(),
OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
AttributeFuncs::updateMinLegalVectorWidthAttr(*NewCB->getCaller(),
LargestVectorWidth);
CallSitePairs.push_back({OldCB, NewCB});
return true;
};
bool UsedAssumedInformation = false;
bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
true, nullptr, UsedAssumedInformation);
(void)Success;
assert(Success && "Assumed call site replacement to succeed!");
Argument *OldFnArgIt = OldFn->arg_begin();
Argument *NewFnArgIt = NewFn->arg_begin();
for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
++OldArgNum, ++OldFnArgIt) {
if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
ARIs[OldArgNum]) {
if (ARI->CalleeRepairCB)
ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
if (ARI->ReplacementTypes.empty())
OldFnArgIt->replaceAllUsesWith(
PoisonValue::get(OldFnArgIt->getType()));
NewFnArgIt += ARI->ReplacementTypes.size();
} else {
NewFnArgIt->takeName(&*OldFnArgIt);
OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
++NewFnArgIt;
}
}
for (auto &CallSitePair : CallSitePairs) {
CallBase &OldCB = *CallSitePair.first;
CallBase &NewCB = *CallSitePair.second;
assert(OldCB.getType() == NewCB.getType() &&
"Cannot handle call sites with different types!");
ModifiedFns.insert(OldCB.getFunction());
Configuration.CGUpdater.replaceCallSite(OldCB, NewCB);
OldCB.replaceAllUsesWith(&NewCB);
OldCB.eraseFromParent();
}
Configuration.CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
if (ModifiedFns.remove(OldFn))
ModifiedFns.insert(NewFn);
Changed = ChangeStatus::CHANGED;
}
return Changed;
}
void InformationCache::initializeInformationCache(const Function &CF,
FunctionInfo &FI) {
Function &F = const_cast<Function &>(CF);
DenseMap<const Value *, Optional<short>> AssumeUsesMap;
auto AddToAssumeUsesMap = [&](const Value &V) -> void {
SmallVector<const Instruction *> Worklist;
if (auto *I = dyn_cast<Instruction>(&V))
Worklist.push_back(I);
while (!Worklist.empty()) {
const Instruction *I = Worklist.pop_back_val();
Optional<short> &NumUses = AssumeUsesMap[I];
if (!NumUses)
NumUses = I->getNumUses();
NumUses = NumUses.value() - 1;
if (NumUses.value() != 0)
continue;
AssumeOnlyValues.insert(I);
for (const Value *Op : I->operands())
if (auto *OpI = dyn_cast<Instruction>(Op))
Worklist.push_back(OpI);
}
};
for (Instruction &I : instructions(&F)) {
bool IsInterestingOpcode = false;
switch (I.getOpcode()) {
default:
assert(!isa<CallBase>(&I) &&
"New call base instruction type needs to be known in the "
"Attributor.");
break;
case Instruction::Call:
if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
fillMapFromAssume(*Assume, KnowledgeMap);
AddToAssumeUsesMap(*Assume->getArgOperand(0));
} else if (cast<CallInst>(I).isMustTailCall()) {
FI.ContainsMustTailCall = true;
if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
getFunctionInfo(*Callee).CalledViaMustTail = true;
}
LLVM_FALLTHROUGH;
case Instruction::CallBr:
case Instruction::Invoke:
case Instruction::CleanupRet:
case Instruction::CatchSwitch:
case Instruction::AtomicRMW:
case Instruction::AtomicCmpXchg:
case Instruction::Br:
case Instruction::Resume:
case Instruction::Ret:
case Instruction::Load:
case Instruction::Store:
case Instruction::Alloca:
case Instruction::AddrSpaceCast:
IsInterestingOpcode = true;
}
if (IsInterestingOpcode) {
auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
if (!Insts)
Insts = new (Allocator) InstructionVectorTy();
Insts->push_back(&I);
}
if (I.mayReadOrWriteMemory())
FI.RWInsts.push_back(&I);
}
if (F.hasFnAttribute(Attribute::AlwaysInline) &&
isInlineViable(F).isSuccess())
InlineableFunctions.insert(&F);
}
AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
return AG.getAnalysis<AAManager>(F);
}
InformationCache::FunctionInfo::~FunctionInfo() {
for (auto &It : OpcodeInstMap)
It.getSecond()->~InstructionVectorTy();
}
void Attributor::recordDependence(const AbstractAttribute &FromAA,
const AbstractAttribute &ToAA,
DepClassTy DepClass) {
if (DepClass == DepClassTy::NONE)
return;
if (DependenceStack.empty())
return;
if (FromAA.getState().isAtFixpoint())
return;
DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
}
void Attributor::rememberDependences() {
assert(!DependenceStack.empty() && "No dependences to remember!");
for (DepInfo &DI : *DependenceStack.back()) {
assert((DI.DepClass == DepClassTy::REQUIRED ||
DI.DepClass == DepClassTy::OPTIONAL) &&
"Expected required or optional dependence (1 bit)!");
auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
DepAAs.push_back(AbstractAttribute::DepTy(
const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
}
}
void Attributor::identifyDefaultAbstractAttributes(Function &F) {
if (!VisitedFunctions.insert(&F).second)
return;
if (F.isDeclaration())
return;
InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
if (!isModulePass() && !FI.CalledViaMustTail) {
for (const Use &U : F.uses())
if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
if (CB->isCallee(&U) && CB->isMustTailCall())
FI.CalledViaMustTail = true;
}
IRPosition FPos = IRPosition::function(F);
getOrCreateAAFor<AAIsDead>(FPos);
getOrCreateAAFor<AAWillReturn>(FPos);
getOrCreateAAFor<AAUndefinedBehavior>(FPos);
getOrCreateAAFor<AANoUnwind>(FPos);
getOrCreateAAFor<AANoSync>(FPos);
getOrCreateAAFor<AANoFree>(FPos);
getOrCreateAAFor<AANoReturn>(FPos);
getOrCreateAAFor<AANoRecurse>(FPos);
getOrCreateAAFor<AAMemoryBehavior>(FPos);
getOrCreateAAFor<AAMemoryLocation>(FPos);
getOrCreateAAFor<AAAssumptionInfo>(FPos);
if (EnableHeapToStack)
getOrCreateAAFor<AAHeapToStack>(FPos);
Type *ReturnType = F.getReturnType();
if (!ReturnType->isVoidTy()) {
getOrCreateAAFor<AAReturnedValues>(FPos);
IRPosition RetPos = IRPosition::returned(F);
getOrCreateAAFor<AAIsDead>(RetPos);
bool UsedAssumedInformation = false;
getAssumedSimplified(RetPos, nullptr, UsedAssumedInformation,
AA::Intraprocedural);
getOrCreateAAFor<AANoUndef>(RetPos);
if (ReturnType->isPointerTy()) {
getOrCreateAAFor<AAAlign>(RetPos);
getOrCreateAAFor<AANonNull>(RetPos);
getOrCreateAAFor<AANoAlias>(RetPos);
getOrCreateAAFor<AADereferenceable>(RetPos);
}
}
for (Argument &Arg : F.args()) {
IRPosition ArgPos = IRPosition::argument(Arg);
bool UsedAssumedInformation = false;
getAssumedSimplified(ArgPos, nullptr, UsedAssumedInformation,
AA::Intraprocedural);
getOrCreateAAFor<AAIsDead>(ArgPos);
getOrCreateAAFor<AANoUndef>(ArgPos);
if (Arg.getType()->isPointerTy()) {
getOrCreateAAFor<AANonNull>(ArgPos);
getOrCreateAAFor<AANoAlias>(ArgPos);
getOrCreateAAFor<AADereferenceable>(ArgPos);
getOrCreateAAFor<AAAlign>(ArgPos);
getOrCreateAAFor<AANoCapture>(ArgPos);
getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
getOrCreateAAFor<AANoFree>(ArgPos);
getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
}
}
auto CallSitePred = [&](Instruction &I) -> bool {
auto &CB = cast<CallBase>(I);
IRPosition CBInstPos = IRPosition::inst(CB);
IRPosition CBFnPos = IRPosition::callsite_function(CB);
getOrCreateAAFor<AAIsDead>(CBInstPos);
Function *Callee = CB.getCalledFunction();
if (!Callee)
return true;
getOrCreateAAFor<AAAssumptionInfo>(CBFnPos);
if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
!Callee->hasMetadata(LLVMContext::MD_callback))
return true;
if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
IRPosition CBRetPos = IRPosition::callsite_returned(CB);
bool UsedAssumedInformation = false;
getAssumedSimplified(CBRetPos, nullptr, UsedAssumedInformation,
AA::Intraprocedural);
}
for (int I = 0, E = CB.arg_size(); I < E; ++I) {
IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
getOrCreateAAFor<AAIsDead>(CBArgPos);
bool UsedAssumedInformation = false;
getAssumedSimplified(CBArgPos, nullptr, UsedAssumedInformation,
AA::Intraprocedural);
getOrCreateAAFor<AANoUndef>(CBArgPos);
if (!CB.getArgOperand(I)->getType()->isPointerTy())
continue;
getOrCreateAAFor<AANonNull>(CBArgPos);
getOrCreateAAFor<AANoCapture>(CBArgPos);
getOrCreateAAFor<AANoAlias>(CBArgPos);
getOrCreateAAFor<AADereferenceable>(CBArgPos);
getOrCreateAAFor<AAAlign>(CBArgPos);
getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
getOrCreateAAFor<AANoFree>(CBArgPos);
}
return true;
};
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
bool Success;
bool UsedAssumedInformation = false;
Success = checkForAllInstructionsImpl(
nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
{(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call},
UsedAssumedInformation);
(void)Success;
assert(Success && "Expected the check call to be successful!");
auto LoadStorePred = [&](Instruction &I) -> bool {
if (isa<LoadInst>(I)) {
getOrCreateAAFor<AAAlign>(
IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
if (SimplifyAllLoads)
getAssumedSimplified(IRPosition::value(I), nullptr,
UsedAssumedInformation, AA::Intraprocedural);
} else {
auto &SI = cast<StoreInst>(I);
getOrCreateAAFor<AAIsDead>(IRPosition::inst(I));
getAssumedSimplified(IRPosition::value(*SI.getValueOperand()), nullptr,
UsedAssumedInformation, AA::Intraprocedural);
getOrCreateAAFor<AAAlign>(IRPosition::value(*SI.getPointerOperand()));
}
return true;
};
Success = checkForAllInstructionsImpl(
nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
{(unsigned)Instruction::Load, (unsigned)Instruction::Store},
UsedAssumedInformation);
(void)Success;
assert(Success && "Expected the check call to be successful!");
}
raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
}
raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
switch (AP) {
case IRPosition::IRP_INVALID:
return OS << "inv";
case IRPosition::IRP_FLOAT:
return OS << "flt";
case IRPosition::IRP_RETURNED:
return OS << "fn_ret";
case IRPosition::IRP_CALL_SITE_RETURNED:
return OS << "cs_ret";
case IRPosition::IRP_FUNCTION:
return OS << "fn";
case IRPosition::IRP_CALL_SITE:
return OS << "cs";
case IRPosition::IRP_ARGUMENT:
return OS << "arg";
case IRPosition::IRP_CALL_SITE_ARGUMENT:
return OS << "cs_arg";
}
llvm_unreachable("Unknown attribute position!");
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
const Value &AV = Pos.getAssociatedValue();
OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
<< Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
if (Pos.hasCallBaseContext())
OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
return OS << "}";
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
OS << "range-state(" << S.getBitWidth() << ")<";
S.getKnown().print(OS);
OS << " / ";
S.getAssumed().print(OS);
OS << ">";
return OS << static_cast<const AbstractState &>(S);
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
AA.print(OS);
return OS;
}
raw_ostream &llvm::operator<<(raw_ostream &OS,
const PotentialConstantIntValuesState &S) {
OS << "set-state(< {";
if (!S.isValidState())
OS << "full-set";
else {
for (auto &It : S.getAssumedSet())
OS << It << ", ";
if (S.undefIsContained())
OS << "undef ";
}
OS << "} >)";
return OS;
}
raw_ostream &llvm::operator<<(raw_ostream &OS,
const PotentialLLVMValuesState &S) {
OS << "set-state(< {";
if (!S.isValidState())
OS << "full-set";
else {
for (auto &It : S.getAssumedSet()) {
if (auto *F = dyn_cast<Function>(It.first.getValue()))
OS << "@" << F->getName() << "[" << int(It.second) << "], ";
else
OS << *It.first.getValue() << "[" << int(It.second) << "], ";
}
if (S.undefIsContained())
OS << "undef ";
}
OS << "} >)";
return OS;
}
void AbstractAttribute::print(raw_ostream &OS) const {
OS << "[";
OS << getName();
OS << "] for CtxI ";
if (auto *I = getCtxI()) {
OS << "'";
I->print(OS);
OS << "'";
} else
OS << "<<null inst>>";
OS << " at position " << getIRPosition() << " with state " << getAsStr()
<< '\n';
}
void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
print(OS);
for (const auto &DepAA : Deps) {
auto *AA = DepAA.getPointer();
OS << " updates ";
AA->print(OS);
}
OS << '\n';
}
raw_ostream &llvm::operator<<(raw_ostream &OS,
const AAPointerInfo::Access &Acc) {
OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
if (Acc.getLocalInst() != Acc.getRemoteInst())
OS << " via " << *Acc.getLocalInst();
if (Acc.getContent()) {
if (*Acc.getContent())
OS << " [" << **Acc.getContent() << "]";
else
OS << " [ <unknown> ]";
}
return OS;
}
static bool runAttributorOnFunctions(InformationCache &InfoCache,
SetVector<Function *> &Functions,
AnalysisGetter &AG,
CallGraphUpdater &CGUpdater,
bool DeleteFns, bool IsModulePass) {
if (Functions.empty())
return false;
LLVM_DEBUG({
dbgs() << "[Attributor] Run on module with " << Functions.size()
<< " functions:\n";
for (Function *Fn : Functions)
dbgs() << " - " << Fn->getName() << "\n";
});
AttributorConfig AC(CGUpdater);
AC.IsModulePass = IsModulePass;
AC.DeleteFns = DeleteFns;
Attributor A(Functions, InfoCache, AC);
if (AllowShallowWrappers)
for (Function *F : Functions)
if (!A.isFunctionIPOAmendable(*F))
Attributor::createShallowWrapper(*F);
if (AllowDeepWrapper) {
unsigned FunSize = Functions.size();
for (unsigned u = 0; u < FunSize; u++) {
Function *F = Functions[u];
if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
!GlobalValue::isInterposableLinkage(F->getLinkage())) {
Function *NewF = Attributor::internalizeFunction(*F);
assert(NewF && "Could not internalize function.");
Functions.insert(NewF);
CGUpdater.replaceFunctionWith(*F, *NewF);
for (const Use &U : NewF->uses())
if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
auto *CallerF = CB->getCaller();
CGUpdater.reanalyzeFunction(*CallerF);
}
}
}
}
for (Function *F : Functions) {
if (F->hasExactDefinition())
NumFnWithExactDefinition++;
else
NumFnWithoutExactDefinition++;
if (F->hasLocalLinkage()) {
if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
const auto *CB = dyn_cast<CallBase>(U.getUser());
return CB && CB->isCallee(&U) &&
Functions.count(const_cast<Function *>(CB->getCaller()));
}))
continue;
}
A.identifyDefaultAbstractAttributes(*F);
}
ChangeStatus Changed = A.run();
LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
<< " functions, result: " << Changed << ".\n");
return Changed == ChangeStatus::CHANGED;
}
void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
void AADepGraph::dumpGraph() {
static std::atomic<int> CallTimes;
std::string Prefix;
if (!DepGraphDotFileNamePrefix.empty())
Prefix = DepGraphDotFileNamePrefix;
else
Prefix = "dep_graph";
std::string Filename =
Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
outs() << "Dependency graph dump to " << Filename << ".\n";
std::error_code EC;
raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
if (!EC)
llvm::WriteGraph(File, this);
CallTimes++;
}
void AADepGraph::print() {
for (auto DepAA : SyntheticRoot.Deps)
cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
}
PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
AnalysisGetter AG(FAM);
SetVector<Function *> Functions;
for (Function &F : M)
Functions.insert(&F);
CallGraphUpdater CGUpdater;
BumpPtrAllocator Allocator;
InformationCache InfoCache(M, AG, Allocator, nullptr);
if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
true, true)) {
return PreservedAnalyses::none();
}
return PreservedAnalyses::all();
}
PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
AnalysisGetter AG(FAM);
SetVector<Function *> Functions;
for (LazyCallGraph::Node &N : C)
Functions.insert(&N.getFunction());
if (Functions.empty())
return PreservedAnalyses::all();
Module &M = *Functions.back()->getParent();
CallGraphUpdater CGUpdater;
CGUpdater.initialize(CG, C, AM, UR);
BumpPtrAllocator Allocator;
InformationCache InfoCache(M, AG, Allocator, &Functions);
if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
false,
false)) {
PreservedAnalyses PA;
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
return PA;
}
return PreservedAnalyses::all();
}
namespace llvm {
template <> struct GraphTraits<AADepGraphNode *> {
using NodeRef = AADepGraphNode *;
using DepTy = PointerIntPair<AADepGraphNode *, 1>;
using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
using ChildIteratorType =
mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
};
template <>
struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
using nodes_iterator =
mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
};
template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
static std::string getNodeLabel(const AADepGraphNode *Node,
const AADepGraph *DG) {
std::string AAString;
raw_string_ostream O(AAString);
Node->print(O);
return AAString;
}
};
}
namespace {
struct AttributorLegacyPass : public ModulePass {
static char ID;
AttributorLegacyPass() : ModulePass(ID) {
initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (skipModule(M))
return false;
AnalysisGetter AG;
SetVector<Function *> Functions;
for (Function &F : M)
Functions.insert(&F);
CallGraphUpdater CGUpdater;
BumpPtrAllocator Allocator;
InformationCache InfoCache(M, AG, Allocator, nullptr);
return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
true,
true);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
static char ID;
AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnSCC(CallGraphSCC &SCC) override {
if (skipSCC(SCC))
return false;
SetVector<Function *> Functions;
for (CallGraphNode *CGN : SCC)
if (Function *Fn = CGN->getFunction())
if (!Fn->isDeclaration())
Functions.insert(Fn);
if (Functions.empty())
return false;
AnalysisGetter AG;
CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
CallGraphUpdater CGUpdater;
CGUpdater.initialize(CG, SCC);
Module &M = *Functions.back()->getParent();
BumpPtrAllocator Allocator;
InformationCache InfoCache(M, AG, Allocator, &Functions);
return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
false,
false);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetLibraryInfoWrapperPass>();
CallGraphSCCPass::getAnalysisUsage(AU);
}
};
}
Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
Pass *llvm::createAttributorCGSCCLegacyPass() {
return new AttributorCGSCCLegacyPass();
}
char AttributorLegacyPass::ID = 0;
char AttributorCGSCCLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)
INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",
"Deduce and propagate attributes (CGSCC pass)", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",
"Deduce and propagate attributes (CGSCC pass)", false,
false)