; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -S -passes=instcombine < %s | FileCheck %s ; (-0.0 - X) * C => X * -C define float @neg_constant(float %x) { ; CHECK-LABEL: @neg_constant( ; CHECK-NEXT: [[MUL:%.*]] = fmul ninf float [[X:%.*]], -2.000000e+01 ; CHECK-NEXT: ret float [[MUL]] ; %sub = fsub float -0.0, %x %mul = fmul ninf float %sub, 2.0e+1 ret float %mul } define float @unary_neg_constant(float %x) { ; CHECK-LABEL: @unary_neg_constant( ; CHECK-NEXT: [[MUL:%.*]] = fmul ninf float [[X:%.*]], -2.000000e+01 ; CHECK-NEXT: ret float [[MUL]] ; %sub = fneg float %x %mul = fmul ninf float %sub, 2.0e+1 ret float %mul } define <2 x float> @neg_constant_vec(<2 x float> %x) { ; CHECK-LABEL: @neg_constant_vec( ; CHECK-NEXT: [[MUL:%.*]] = fmul ninf <2 x float> [[X:%.*]], <float -2.000000e+00, float -3.000000e+00> ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub = fsub <2 x float> <float -0.0, float -0.0>, %x %mul = fmul ninf <2 x float> %sub, <float 2.0, float 3.0> ret <2 x float> %mul } define <2 x float> @unary_neg_constant_vec(<2 x float> %x) { ; CHECK-LABEL: @unary_neg_constant_vec( ; CHECK-NEXT: [[MUL:%.*]] = fmul ninf <2 x float> [[X:%.*]], <float -2.000000e+00, float -3.000000e+00> ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub = fneg <2 x float> %x %mul = fmul ninf <2 x float> %sub, <float 2.0, float 3.0> ret <2 x float> %mul } define <2 x float> @neg_constant_vec_undef(<2 x float> %x) { ; CHECK-LABEL: @neg_constant_vec_undef( ; CHECK-NEXT: [[MUL:%.*]] = fmul ninf <2 x float> [[X:%.*]], <float -2.000000e+00, float -3.000000e+00> ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub = fsub <2 x float> <float undef, float -0.0>, %x %mul = fmul ninf <2 x float> %sub, <float 2.0, float 3.0> ret <2 x float> %mul } ; (0.0 - X) * C => X * -C define float @neg_nsz_constant(float %x) { ; CHECK-LABEL: @neg_nsz_constant( ; CHECK-NEXT: [[MUL:%.*]] = fmul nnan float [[X:%.*]], -2.000000e+01 ; CHECK-NEXT: ret float [[MUL]] ; %sub = fsub nsz float 0.0, %x %mul = fmul nnan float %sub, 2.0e+1 ret float %mul } define float @unary_neg_nsz_constant(float %x) { ; CHECK-LABEL: @unary_neg_nsz_constant( ; CHECK-NEXT: [[MUL:%.*]] = fmul nnan float [[X:%.*]], -2.000000e+01 ; CHECK-NEXT: ret float [[MUL]] ; %sub = fneg nsz float %x %mul = fmul nnan float %sub, 2.0e+1 ret float %mul } ; (-0.0 - X) * (-0.0 - Y) => X * Y define float @neg_neg(float %x, float %y) { ; CHECK-LABEL: @neg_neg( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sub1 = fsub float -0.0, %x %sub2 = fsub float -0.0, %y %mul = fmul arcp float %sub1, %sub2 ret float %mul } define float @unary_neg_unary_neg(float %x, float %y) { ; CHECK-LABEL: @unary_neg_unary_neg( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sub1 = fneg float %x %sub2 = fneg float %y %mul = fmul arcp float %sub1, %sub2 ret float %mul } define float @unary_neg_neg(float %x, float %y) { ; CHECK-LABEL: @unary_neg_neg( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sub1 = fneg float %x %sub2 = fsub float -0.0, %y %mul = fmul arcp float %sub1, %sub2 ret float %mul } define float @neg_unary_neg(float %x, float %y) { ; CHECK-LABEL: @neg_unary_neg( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sub1 = fsub float -0.0, %x %sub2 = fneg float %y %mul = fmul arcp float %sub1, %sub2 ret float %mul } define <2 x float> @neg_neg_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @neg_neg_vec( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub1 = fsub <2 x float> <float -0.0, float -0.0>, %x %sub2 = fsub <2 x float> <float -0.0, float -0.0>, %y %mul = fmul arcp <2 x float> %sub1, %sub2 ret <2 x float> %mul } define <2 x float> @unary_neg_unary_neg_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @unary_neg_unary_neg_vec( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub1 = fneg <2 x float> %x %sub2 = fneg <2 x float> %y %mul = fmul arcp <2 x float> %sub1, %sub2 ret <2 x float> %mul } define <2 x float> @unary_neg_neg_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @unary_neg_neg_vec( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub1 = fneg <2 x float> %x %sub2 = fsub <2 x float> <float -0.0, float -0.0>, %y %mul = fmul arcp <2 x float> %sub1, %sub2 ret <2 x float> %mul } define <2 x float> @neg_unary_neg_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @neg_unary_neg_vec( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub1 = fsub <2 x float> <float -0.0, float -0.0>, %x %sub2 = fneg <2 x float> %y %mul = fmul arcp <2 x float> %sub1, %sub2 ret <2 x float> %mul } define <2 x float> @neg_neg_vec_undef(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @neg_neg_vec_undef( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub1 = fsub <2 x float> <float -0.0, float undef>, %x %sub2 = fsub <2 x float> <float undef, float -0.0>, %y %mul = fmul arcp <2 x float> %sub1, %sub2 ret <2 x float> %mul } define <2 x float> @unary_neg_neg_vec_undef(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @unary_neg_neg_vec_undef( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %neg = fneg <2 x float> %x %sub = fsub <2 x float> <float undef, float -0.0>, %y %mul = fmul arcp <2 x float> %neg, %sub ret <2 x float> %mul } define <2 x float> @neg_unary_neg_vec_undef(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @neg_unary_neg_vec_undef( ; CHECK-NEXT: [[MUL:%.*]] = fmul arcp <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub = fsub <2 x float> <float -0.0, float undef>, %x %neg = fneg <2 x float> %y %mul = fmul arcp <2 x float> %sub, %neg ret <2 x float> %mul } ; (0.0 - X) * (0.0 - Y) => X * Y define float @neg_neg_nsz(float %x, float %y) { ; CHECK-LABEL: @neg_neg_nsz( ; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sub1 = fsub nsz float 0.0, %x %sub2 = fsub nsz float 0.0, %y %mul = fmul afn float %sub1, %sub2 ret float %mul } declare void @use_f32(float) define float @neg_neg_multi_use(float %x, float %y) { ; CHECK-LABEL: @neg_neg_multi_use( ; CHECK-NEXT: [[NX:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: [[NY:%.*]] = fneg float [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X]], [[Y]] ; CHECK-NEXT: call void @use_f32(float [[NX]]) ; CHECK-NEXT: call void @use_f32(float [[NY]]) ; CHECK-NEXT: ret float [[MUL]] ; %nx = fsub float -0.0, %x %ny = fsub float -0.0, %y %mul = fmul afn float %nx, %ny call void @use_f32(float %nx) call void @use_f32(float %ny) ret float %mul } define float @unary_neg_unary_neg_multi_use(float %x, float %y) { ; CHECK-LABEL: @unary_neg_unary_neg_multi_use( ; CHECK-NEXT: [[NX:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: [[NY:%.*]] = fneg float [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X]], [[Y]] ; CHECK-NEXT: call void @use_f32(float [[NX]]) ; CHECK-NEXT: call void @use_f32(float [[NY]]) ; CHECK-NEXT: ret float [[MUL]] ; %nx = fneg float %x %ny = fneg float %y %mul = fmul afn float %nx, %ny call void @use_f32(float %nx) call void @use_f32(float %ny) ret float %mul } define float @unary_neg_neg_multi_use(float %x, float %y) { ; CHECK-LABEL: @unary_neg_neg_multi_use( ; CHECK-NEXT: [[NX:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: [[NY:%.*]] = fneg float [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X]], [[Y]] ; CHECK-NEXT: call void @use_f32(float [[NX]]) ; CHECK-NEXT: call void @use_f32(float [[NY]]) ; CHECK-NEXT: ret float [[MUL]] ; %nx = fneg float %x %ny = fsub float -0.0, %y %mul = fmul afn float %nx, %ny call void @use_f32(float %nx) call void @use_f32(float %ny) ret float %mul } define float @neg_unary_neg_multi_use(float %x, float %y) { ; CHECK-LABEL: @neg_unary_neg_multi_use( ; CHECK-NEXT: [[NX:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: [[NY:%.*]] = fneg float [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul afn float [[X]], [[Y]] ; CHECK-NEXT: call void @use_f32(float [[NX]]) ; CHECK-NEXT: call void @use_f32(float [[NY]]) ; CHECK-NEXT: ret float [[MUL]] ; %nx = fsub float -0.0, %x %ny = fneg float %y %mul = fmul afn float %nx, %ny call void @use_f32(float %nx) call void @use_f32(float %ny) ret float %mul } ; (-0.0 - X) * Y define float @neg_mul(float %x, float %y) { ; CHECK-LABEL: @neg_mul( ; CHECK-NEXT: [[SUB:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[SUB]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sub = fsub float -0.0, %x %mul = fmul float %sub, %y ret float %mul } define float @unary_neg_mul(float %x, float %y) { ; CHECK-LABEL: @unary_neg_mul( ; CHECK-NEXT: [[NEG:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[NEG]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %neg = fneg float %x %mul = fmul float %neg, %y ret float %mul } define <2 x float> @neg_mul_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @neg_mul_vec( ; CHECK-NEXT: [[SUB:%.*]] = fneg <2 x float> [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul <2 x float> [[SUB]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub = fsub <2 x float> <float -0.0, float -0.0>, %x %mul = fmul <2 x float> %sub, %y ret <2 x float> %mul } define <2 x float> @unary_neg_mul_vec(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @unary_neg_mul_vec( ; CHECK-NEXT: [[SUB:%.*]] = fneg <2 x float> [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul <2 x float> [[SUB]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub = fneg <2 x float> %x %mul = fmul <2 x float> %sub, %y ret <2 x float> %mul } define <2 x float> @neg_mul_vec_undef(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @neg_mul_vec_undef( ; CHECK-NEXT: [[SUB:%.*]] = fneg <2 x float> [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul <2 x float> [[SUB]], [[Y:%.*]] ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sub = fsub <2 x float> <float undef, float -0.0>, %x %mul = fmul <2 x float> %sub, %y ret <2 x float> %mul } ; (0.0 - X) * Y define float @neg_sink_nsz(float %x, float %y) { ; CHECK-LABEL: @neg_sink_nsz( ; CHECK-NEXT: [[SUB1:%.*]] = fneg nsz float [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[SUB1]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sub1 = fsub nsz float 0.0, %x %mul = fmul float %sub1, %y ret float %mul } define float @neg_sink_multi_use(float %x, float %y) { ; CHECK-LABEL: @neg_sink_multi_use( ; CHECK-NEXT: [[SUB1:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[SUB1]], [[Y:%.*]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul float [[MUL]], [[SUB1]] ; CHECK-NEXT: ret float [[MUL2]] ; %sub1 = fsub float -0.0, %x %mul = fmul float %sub1, %y %mul2 = fmul float %mul, %sub1 ret float %mul2 } define float @unary_neg_mul_multi_use(float %x, float %y) { ; CHECK-LABEL: @unary_neg_mul_multi_use( ; CHECK-NEXT: [[SUB1:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[SUB1]], [[Y:%.*]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul float [[MUL]], [[SUB1]] ; CHECK-NEXT: ret float [[MUL2]] ; %sub1 = fneg float %x %mul = fmul float %sub1, %y %mul2 = fmul float %mul, %sub1 ret float %mul2 } ; Don't crash when attempting to cast a constant FMul to an instruction. define void @test8(i32* %inout, i1 %c1) { ; CHECK-LABEL: @test8( ; CHECK-NEXT: entry: ; CHECK-NEXT: br label [[FOR_COND:%.*]] ; CHECK: for.cond: ; CHECK-NEXT: [[LOCAL_VAR_7_0:%.*]] = phi <4 x float> [ <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, [[ENTRY:%.*]] ], [ [[TMP0:%.*]], [[FOR_BODY:%.*]] ] ; CHECK-NEXT: br i1 [[C1:%.*]], label [[FOR_BODY]], label [[FOR_END:%.*]] ; CHECK: for.body: ; CHECK-NEXT: [[TMP0]] = insertelement <4 x float> [[LOCAL_VAR_7_0]], float 0.000000e+00, i64 2 ; CHECK-NEXT: br label [[FOR_COND]] ; CHECK: for.end: ; CHECK-NEXT: ret void ; entry: %0 = load i32, i32* %inout, align 4 %conv = uitofp i32 %0 to float %vecinit = insertelement <4 x float> <float 0.000000e+00, float 0.000000e+00, float 0.000000e+00, float undef>, float %conv, i32 3 %sub = fsub <4 x float> <float -0.000000e+00, float -0.000000e+00, float -0.000000e+00, float -0.000000e+00>, %vecinit %1 = shufflevector <4 x float> %sub, <4 x float> undef, <4 x i32> <i32 1, i32 1, i32 1, i32 1> %mul = fmul <4 x float> zeroinitializer, %1 br label %for.cond for.cond: ; preds = %for.body, %entry %local_var_7.0 = phi <4 x float> [ %mul, %entry ], [ %2, %for.body ] br i1 %c1, label %for.body, label %for.end for.body: ; preds = %for.cond %2 = insertelement <4 x float> %local_var_7.0, float 0.000000e+00, i32 2 br label %for.cond for.end: ; preds = %for.cond ret void } ; X * -1.0 => -0.0 - X define float @test9(float %x) { ; CHECK-LABEL: @test9( ; CHECK-NEXT: [[MUL:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %mul = fmul float %x, -1.0 ret float %mul } ; PR18532 define <4 x float> @test10(<4 x float> %x) { ; CHECK-LABEL: @test10( ; CHECK-NEXT: [[MUL:%.*]] = fneg arcp afn <4 x float> [[X:%.*]] ; CHECK-NEXT: ret <4 x float> [[MUL]] ; %mul = fmul arcp afn <4 x float> %x, <float -1.0, float -1.0, float -1.0, float -1.0> ret <4 x float> %mul } define float @test11(float %x, float %y) { ; CHECK-LABEL: @test11( ; CHECK-NEXT: [[B:%.*]] = fadd fast float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[C:%.*]] = fadd fast float [[B]], 3.000000e+00 ; CHECK-NEXT: ret float [[C]] ; %a = fadd fast float %x, 1.0 %b = fadd fast float %y, 2.0 %c = fadd fast float %a, %b ret float %c } declare double @llvm.sqrt.f64(double) ; With unsafe/fast math, sqrt(X) * sqrt(X) is just X, ; but make sure another use of the sqrt is intact. ; Note that the remaining fmul is altered but is not 'fast' ; itself because it was not marked 'fast' originally. ; Thus, we have an overall fast result, but no more indication of ; 'fast'ness in the code. define double @sqrt_squared2(double %f) { ; CHECK-LABEL: @sqrt_squared2( ; CHECK-NEXT: [[SQRT:%.*]] = call double @llvm.sqrt.f64(double [[F:%.*]]) ; CHECK-NEXT: [[MUL2:%.*]] = fmul double [[SQRT]], [[F]] ; CHECK-NEXT: ret double [[MUL2]] ; %sqrt = call double @llvm.sqrt.f64(double %f) %mul1 = fmul fast double %sqrt, %sqrt %mul2 = fmul double %mul1, %sqrt ret double %mul2 } declare float @llvm.fabs.f32(float) nounwind readnone define float @fabs_squared(float %x) { ; CHECK-LABEL: @fabs_squared( ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X:%.*]], [[X]] ; CHECK-NEXT: ret float [[MUL]] ; %x.fabs = call float @llvm.fabs.f32(float %x) %mul = fmul float %x.fabs, %x.fabs ret float %mul } define float @fabs_squared_fast(float %x) { ; CHECK-LABEL: @fabs_squared_fast( ; CHECK-NEXT: [[MUL:%.*]] = fmul fast float [[X:%.*]], [[X]] ; CHECK-NEXT: ret float [[MUL]] ; %x.fabs = call float @llvm.fabs.f32(float %x) %mul = fmul fast float %x.fabs, %x.fabs ret float %mul } define float @fabs_fabs(float %x, float %y) { ; CHECK-LABEL: @fabs_fabs( ; CHECK-NEXT: [[TMP1:%.*]] = fmul float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = call float @llvm.fabs.f32(float [[TMP1]]) ; CHECK-NEXT: ret float [[MUL]] ; %x.fabs = call float @llvm.fabs.f32(float %x) %y.fabs = call float @llvm.fabs.f32(float %y) %mul = fmul float %x.fabs, %y.fabs ret float %mul } define float @fabs_fabs_extra_use1(float %x, float %y) { ; CHECK-LABEL: @fabs_fabs_extra_use1( ; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: call void @use_f32(float [[X_FABS]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul ninf float [[X]], [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = call ninf float @llvm.fabs.f32(float [[TMP1]]) ; CHECK-NEXT: ret float [[MUL]] ; %x.fabs = call float @llvm.fabs.f32(float %x) call void @use_f32(float %x.fabs) %y.fabs = call float @llvm.fabs.f32(float %y) %mul = fmul ninf float %x.fabs, %y.fabs ret float %mul } define float @fabs_fabs_extra_use2(float %x, float %y) { ; CHECK-LABEL: @fabs_fabs_extra_use2( ; CHECK-NEXT: [[Y_FABS:%.*]] = call fast float @llvm.fabs.f32(float [[Y:%.*]]) ; CHECK-NEXT: call void @use_f32(float [[Y_FABS]]) ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc ninf float [[X:%.*]], [[Y]] ; CHECK-NEXT: [[MUL:%.*]] = call reassoc ninf float @llvm.fabs.f32(float [[TMP1]]) ; CHECK-NEXT: ret float [[MUL]] ; %x.fabs = call fast float @llvm.fabs.f32(float %x) %y.fabs = call fast float @llvm.fabs.f32(float %y) call void @use_f32(float %y.fabs) %mul = fmul reassoc ninf float %x.fabs, %y.fabs ret float %mul } ; negative test - don't create an extra instruction define float @fabs_fabs_extra_use3(float %x, float %y) { ; CHECK-LABEL: @fabs_fabs_extra_use3( ; CHECK-NEXT: [[X_FABS:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: call void @use_f32(float [[X_FABS]]) ; CHECK-NEXT: [[Y_FABS:%.*]] = call float @llvm.fabs.f32(float [[Y:%.*]]) ; CHECK-NEXT: call void @use_f32(float [[Y_FABS]]) ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X_FABS]], [[Y_FABS]] ; CHECK-NEXT: ret float [[MUL]] ; %x.fabs = call float @llvm.fabs.f32(float %x) call void @use_f32(float %x.fabs) %y.fabs = call float @llvm.fabs.f32(float %y) call void @use_f32(float %y.fabs) %mul = fmul float %x.fabs, %y.fabs ret float %mul } ; (X*Y) * X => (X*X) * Y ; The transform only requires 'reassoc', but test other FMF in ; the commuted variants to make sure FMF propagates as expected. define float @reassoc_common_operand1(float %x, float %y) { ; CHECK-LABEL: @reassoc_common_operand1( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc float [[X:%.*]], [[X]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul reassoc float [[TMP1]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL2]] ; %mul1 = fmul float %x, %y %mul2 = fmul reassoc float %mul1, %x ret float %mul2 } ; (Y*X) * X => (X*X) * Y define float @reassoc_common_operand2(float %x, float %y) { ; CHECK-LABEL: @reassoc_common_operand2( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[X:%.*]], [[X]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul fast float [[TMP1]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL2]] ; %mul1 = fmul float %y, %x %mul2 = fmul fast float %mul1, %x ret float %mul2 } ; X * (X*Y) => (X*X) * Y define float @reassoc_common_operand3(float %x1, float %y) { ; CHECK-LABEL: @reassoc_common_operand3( ; CHECK-NEXT: [[X:%.*]] = fdiv float [[X1:%.*]], 3.000000e+00 ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc nnan float [[X]], [[X]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul reassoc nnan float [[TMP1]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL2]] ; %x = fdiv float %x1, 3.0 ; thwart complexity-based canonicalization %mul1 = fmul float %x, %y %mul2 = fmul reassoc nnan float %x, %mul1 ret float %mul2 } ; X * (Y*X) => (X*X) * Y define float @reassoc_common_operand4(float %x1, float %y) { ; CHECK-LABEL: @reassoc_common_operand4( ; CHECK-NEXT: [[X:%.*]] = fdiv float [[X1:%.*]], 3.000000e+00 ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc ninf float [[X]], [[X]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul reassoc ninf float [[TMP1]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL2]] ; %x = fdiv float %x1, 3.0 ; thwart complexity-based canonicalization %mul1 = fmul float %y, %x %mul2 = fmul reassoc ninf float %x, %mul1 ret float %mul2 } ; No change if the first fmul has another use. define float @reassoc_common_operand_multi_use(float %x, float %y) { ; CHECK-LABEL: @reassoc_common_operand_multi_use( ; CHECK-NEXT: [[MUL1:%.*]] = fmul float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[MUL2:%.*]] = fmul fast float [[MUL1]], [[X]] ; CHECK-NEXT: call void @use_f32(float [[MUL1]]) ; CHECK-NEXT: ret float [[MUL2]] ; %mul1 = fmul float %x, %y %mul2 = fmul fast float %mul1, %x call void @use_f32(float %mul1) ret float %mul2 } declare float @llvm.log2.f32(float) ; log2(Y * 0.5) * X = log2(Y) * X - X define float @log2half(float %x, float %y) { ; CHECK-LABEL: @log2half( ; CHECK-NEXT: [[TMP1:%.*]] = call fast float @llvm.log2.f32(float [[Y:%.*]]) ; CHECK-NEXT: [[TMP2:%.*]] = fmul fast float [[TMP1]], [[X:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fsub fast float [[TMP2]], [[X]] ; CHECK-NEXT: ret float [[MUL]] ; %halfy = fmul float %y, 0.5 %log2 = call float @llvm.log2.f32(float %halfy) %mul = fmul fast float %log2, %x ret float %mul } define float @log2half_commute(float %x1, float %y) { ; CHECK-LABEL: @log2half_commute( ; CHECK-NEXT: [[TMP1:%.*]] = call fast float @llvm.log2.f32(float [[Y:%.*]]) ; CHECK-NEXT: [[TMP2:%.*]] = fmul fast float [[TMP1]], [[X1:%.*]] ; CHECK-NEXT: [[TMP3:%.*]] = fsub fast float [[TMP2]], [[X1]] ; CHECK-NEXT: [[MUL:%.*]] = fmul fast float [[TMP3]], 0x3FC24924A0000000 ; CHECK-NEXT: ret float [[MUL]] ; %x = fdiv float %x1, 7.0 ; thwart complexity-based canonicalization %halfy = fmul float %y, 0.5 %log2 = call float @llvm.log2.f32(float %halfy) %mul = fmul fast float %x, %log2 ret float %mul } ; C1/X * C2 => (C1*C2) / X define float @fdiv_constant_numerator_fmul(float %x) { ; CHECK-LABEL: @fdiv_constant_numerator_fmul( ; CHECK-NEXT: [[T3:%.*]] = fdiv reassoc float 1.200000e+07, [[X:%.*]] ; CHECK-NEXT: ret float [[T3]] ; %t1 = fdiv float 2.0e+3, %x %t3 = fmul reassoc float %t1, 6.0e+3 ret float %t3 } ; C1/X * C2 => (C1*C2) / X is disabled if C1/X has multiple uses @fmul2_external = external global float define float @fdiv_constant_numerator_fmul_extra_use(float %x) { ; CHECK-LABEL: @fdiv_constant_numerator_fmul_extra_use( ; CHECK-NEXT: [[DIV:%.*]] = fdiv fast float 1.000000e+00, [[X:%.*]] ; CHECK-NEXT: store float [[DIV]], float* @fmul2_external, align 4 ; CHECK-NEXT: [[MUL:%.*]] = fmul fast float [[DIV]], 2.000000e+00 ; CHECK-NEXT: ret float [[MUL]] ; %div = fdiv fast float 1.0, %x store float %div, float* @fmul2_external %mul = fmul fast float %div, 2.0 ret float %mul } ; X/C1 * C2 => X * (C2/C1) (if C2/C1 is normal FP) define float @fdiv_constant_denominator_fmul(float %x) { ; CHECK-LABEL: @fdiv_constant_denominator_fmul( ; CHECK-NEXT: [[T3:%.*]] = fmul reassoc float [[X:%.*]], 3.000000e+00 ; CHECK-NEXT: ret float [[T3]] ; %t1 = fdiv float %x, 2.0e+3 %t3 = fmul reassoc float %t1, 6.0e+3 ret float %t3 } define <4 x float> @fdiv_constant_denominator_fmul_vec(<4 x float> %x) { ; CHECK-LABEL: @fdiv_constant_denominator_fmul_vec( ; CHECK-NEXT: [[T3:%.*]] = fmul reassoc <4 x float> [[X:%.*]], <float 3.000000e+00, float 2.000000e+00, float 1.000000e+00, float 1.000000e+00> ; CHECK-NEXT: ret <4 x float> [[T3]] ; %t1 = fdiv <4 x float> %x, <float 2.0e+3, float 3.0e+3, float 2.0e+3, float 1.0e+3> %t3 = fmul reassoc <4 x float> %t1, <float 6.0e+3, float 6.0e+3, float 2.0e+3, float 1.0e+3> ret <4 x float> %t3 } ; Make sure fmul with constant expression doesn't assert. define <4 x float> @fdiv_constant_denominator_fmul_vec_constexpr(<4 x float> %x) { ; CHECK-LABEL: @fdiv_constant_denominator_fmul_vec_constexpr( ; CHECK-NEXT: [[T3:%.*]] = fmul reassoc <4 x float> [[X:%.*]], <float 3.000000e+00, float 2.000000e+00, float 1.000000e+00, float 1.000000e+00> ; CHECK-NEXT: ret <4 x float> [[T3]] ; %constExprMul = bitcast i128 trunc (i160 bitcast (<5 x float> <float 6.0e+3, float 6.0e+3, float 2.0e+3, float 1.0e+3, float undef> to i160) to i128) to <4 x float> %t1 = fdiv <4 x float> %x, <float 2.0e+3, float 3.0e+3, float 2.0e+3, float 1.0e+3> %t3 = fmul reassoc <4 x float> %t1, %constExprMul ret <4 x float> %t3 } ; This shows that at least part of instcombine does not check constant ; values to see if it is creating denorms (0x3800000000000000 is a denorm ; for 32-bit float), so protecting against denorms in other parts is ; probably not doing the intended job. define float @fmul_constant_reassociation(float %x) { ; CHECK-LABEL: @fmul_constant_reassociation( ; CHECK-NEXT: [[R:%.*]] = fmul reassoc nsz float [[X:%.*]], 0x3800000000000000 ; CHECK-NEXT: ret float [[R]] ; %mul_flt_min = fmul reassoc nsz float %x, 0x3810000000000000 %r = fmul reassoc nsz float %mul_flt_min, 0.5 ret float %r } ; Canonicalization "X/C1 * C2 => X * (C2/C1)" still applies if C2/C1 is denormal ; (otherwise, we should not have allowed the reassociation in the previous test). ; 0x3810000000000000 == FLT_MIN define float @fdiv_constant_denominator_fmul_denorm(float %x) { ; CHECK-LABEL: @fdiv_constant_denominator_fmul_denorm( ; CHECK-NEXT: [[T3:%.*]] = fmul fast float [[X:%.*]], 0x3760620000000000 ; CHECK-NEXT: ret float [[T3]] ; %t1 = fdiv float %x, 2.0e+3 %t3 = fmul fast float %t1, 0x3810000000000000 ret float %t3 } ; X / C1 * C2 => X / (C2/C1) if C1/C2 is abnormal, but C2/C1 is a normal value. ; TODO: We don't convert the fast fdiv to fmul because that would be multiplication ; by a denormal, but we could do better when we know that denormals are not a problem. define float @fdiv_constant_denominator_fmul_denorm_try_harder(float %x) { ; CHECK-LABEL: @fdiv_constant_denominator_fmul_denorm_try_harder( ; CHECK-NEXT: [[T3:%.*]] = fdiv reassoc float [[X:%.*]], 0x47E8000000000000 ; CHECK-NEXT: ret float [[T3]] ; %t1 = fdiv float %x, 3.0 %t3 = fmul reassoc float %t1, 0x3810000000000000 ret float %t3 } ; Negative test: we should not have 2 divisions instead of the 1 we started with. define float @fdiv_constant_denominator_fmul_denorm_try_harder_extra_use(float %x) { ; CHECK-LABEL: @fdiv_constant_denominator_fmul_denorm_try_harder_extra_use( ; CHECK-NEXT: [[T1:%.*]] = fdiv float [[X:%.*]], 3.000000e+00 ; CHECK-NEXT: [[T3:%.*]] = fmul fast float [[T1]], 0x3810000000000000 ; CHECK-NEXT: [[R:%.*]] = fadd float [[T1]], [[T3]] ; CHECK-NEXT: ret float [[R]] ; %t1 = fdiv float %x, 3.0e+0 %t3 = fmul fast float %t1, 0x3810000000000000 %r = fadd float %t1, %t3 ret float %r } ; (X + C1) * C2 --> (X * C2) + C1*C2 define float @fmul_fadd_distribute(float %x) { ; CHECK-LABEL: @fmul_fadd_distribute( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc float [[X:%.*]], 3.000000e+00 ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc float [[TMP1]], 6.000000e+00 ; CHECK-NEXT: ret float [[T3]] ; %t2 = fadd float %x, 2.0 %t3 = fmul reassoc float %t2, 3.0 ret float %t3 } define <2 x float> @fmul_fadd_distribute_vec(<2 x float> %x) { ; CHECK-LABEL: @fmul_fadd_distribute_vec( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc <2 x float> [[X:%.*]], <float 6.000000e+03, float 6.000000e+03> ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc <2 x float> [[TMP1]], <float 1.200000e+07, float 1.200000e+07> ; CHECK-NEXT: ret <2 x float> [[T3]] ; %t1 = fadd <2 x float> <float 2.0e+3, float 2.0e+3>, %x %t3 = fmul reassoc <2 x float> %t1, <float 6.0e+3, float 6.0e+3> ret <2 x float> %t3 } define <vscale x 2 x float> @fmul_fadd_distribute_scalablevec(<vscale x 2 x float> %x) { ; CHECK-LABEL: @fmul_fadd_distribute_scalablevec( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc <vscale x 2 x float> [[X:%.*]], shufflevector (<vscale x 2 x float> insertelement (<vscale x 2 x float> undef, float 6.000000e+03, i32 0), <vscale x 2 x float> undef, <vscale x 2 x i32> zeroinitializer) ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc <vscale x 2 x float> [[TMP1]], shufflevector (<vscale x 2 x float> insertelement (<vscale x 2 x float> poison, float 1.200000e+07, i32 0), <vscale x 2 x float> poison, <vscale x 2 x i32> zeroinitializer) ; CHECK-NEXT: ret <vscale x 2 x float> [[T3]] ; %t1 = fadd <vscale x 2 x float> shufflevector (<vscale x 2 x float> insertelement (<vscale x 2 x float> undef, float 2.0e+3, i32 0), <vscale x 2 x float> undef, <vscale x 2 x i32> zeroinitializer), %x %t3 = fmul reassoc <vscale x 2 x float> %t1, shufflevector (<vscale x 2 x float> insertelement (<vscale x 2 x float> undef, float 6.0e+3, i32 0), <vscale x 2 x float> undef, <vscale x 2 x i32> zeroinitializer) ret <vscale x 2 x float> %t3 } ; (X - C1) * C2 --> (X * C2) - C1*C2 define float @fmul_fsub_distribute1(float %x) { ; CHECK-LABEL: @fmul_fsub_distribute1( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc float [[X:%.*]], 3.000000e+00 ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc float [[TMP1]], -6.000000e+00 ; CHECK-NEXT: ret float [[T3]] ; %t2 = fsub float %x, 2.0 %t3 = fmul reassoc float %t2, 3.0 ret float %t3 } ; (C1 - X) * C2 --> C1*C2 - (X * C2) define float @fmul_fsub_distribute2(float %x) { ; CHECK-LABEL: @fmul_fsub_distribute2( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc float [[X:%.*]], 3.000000e+00 ; CHECK-NEXT: [[T3:%.*]] = fsub reassoc float 6.000000e+00, [[TMP1]] ; CHECK-NEXT: ret float [[T3]] ; %t2 = fsub float 2.0, %x %t3 = fmul reassoc float %t2, 3.0 ret float %t3 } ; FIXME: This should only need 'reassoc'. ; ((X*C1) + C2) * C3 => (X * (C1*C3)) + (C2*C3) define float @fmul_fadd_fmul_distribute(float %x) { ; CHECK-LABEL: @fmul_fadd_fmul_distribute( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[X:%.*]], 3.000000e+01 ; CHECK-NEXT: [[T3:%.*]] = fadd fast float [[TMP1]], 1.000000e+01 ; CHECK-NEXT: ret float [[T3]] ; %t1 = fmul float %x, 6.0 %t2 = fadd float %t1, 2.0 %t3 = fmul fast float %t2, 5.0 ret float %t3 } define float @fmul_fadd_distribute_extra_use(float %x) { ; CHECK-LABEL: @fmul_fadd_distribute_extra_use( ; CHECK-NEXT: [[T1:%.*]] = fmul float [[X:%.*]], 6.000000e+00 ; CHECK-NEXT: [[T2:%.*]] = fadd float [[T1]], 2.000000e+00 ; CHECK-NEXT: [[T3:%.*]] = fmul fast float [[T2]], 5.000000e+00 ; CHECK-NEXT: call void @use_f32(float [[T2]]) ; CHECK-NEXT: ret float [[T3]] ; %t1 = fmul float %x, 6.0 %t2 = fadd float %t1, 2.0 %t3 = fmul fast float %t2, 5.0 call void @use_f32(float %t2) ret float %t3 } ; (X/C1 + C2) * C3 => X/(C1/C3) + C2*C3 ; 0x10000000000000 = DBL_MIN ; TODO: We don't convert the fast fdiv to fmul because that would be multiplication ; by a denormal, but we could do better when we know that denormals are not a problem. define double @fmul_fadd_fdiv_distribute2(double %x) { ; CHECK-LABEL: @fmul_fadd_fdiv_distribute2( ; CHECK-NEXT: [[TMP1:%.*]] = fdiv reassoc double [[X:%.*]], 0x7FE8000000000000 ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc double [[TMP1]], 0x34000000000000 ; CHECK-NEXT: ret double [[T3]] ; %t1 = fdiv double %x, 3.0 %t2 = fadd double %t1, 5.0 %t3 = fmul reassoc double %t2, 0x10000000000000 ret double %t3 } ; 5.0e-1 * DBL_MIN yields denormal, so "(f1*3.0 + 5.0e-1) * DBL_MIN" cannot ; be simplified into f1 * (3.0*DBL_MIN) + (5.0e-1*DBL_MIN) define double @fmul_fadd_fdiv_distribute3(double %x) { ; CHECK-LABEL: @fmul_fadd_fdiv_distribute3( ; CHECK-NEXT: [[TMP1:%.*]] = fdiv reassoc double [[X:%.*]], 0x7FE8000000000000 ; CHECK-NEXT: [[T3:%.*]] = fadd reassoc double [[TMP1]], 0x34000000000000 ; CHECK-NEXT: ret double [[T3]] ; %t1 = fdiv double %x, 3.0 %t2 = fadd double %t1, 5.0 %t3 = fmul reassoc double %t2, 0x10000000000000 ret double %t3 } ; FIXME: This should only need 'reassoc'. ; (C2 - (X*C1)) * C3 => (C2*C3) - (X * (C1*C3)) define float @fmul_fsub_fmul_distribute(float %x) { ; CHECK-LABEL: @fmul_fsub_fmul_distribute( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[X:%.*]], 3.000000e+01 ; CHECK-NEXT: [[T3:%.*]] = fsub fast float 1.000000e+01, [[TMP1]] ; CHECK-NEXT: ret float [[T3]] ; %t1 = fmul float %x, 6.0 %t2 = fsub float 2.0, %t1 %t3 = fmul fast float %t2, 5.0 ret float %t3 } define float @fmul_fsub_fmul_distribute_extra_use(float %x) { ; CHECK-LABEL: @fmul_fsub_fmul_distribute_extra_use( ; CHECK-NEXT: [[T1:%.*]] = fmul float [[X:%.*]], 6.000000e+00 ; CHECK-NEXT: [[T2:%.*]] = fsub float 2.000000e+00, [[T1]] ; CHECK-NEXT: [[T3:%.*]] = fmul fast float [[T2]], 5.000000e+00 ; CHECK-NEXT: call void @use_f32(float [[T2]]) ; CHECK-NEXT: ret float [[T3]] ; %t1 = fmul float %x, 6.0 %t2 = fsub float 2.0, %t1 %t3 = fmul fast float %t2, 5.0 call void @use_f32(float %t2) ret float %t3 } ; FIXME: This should only need 'reassoc'. ; ((X*C1) - C2) * C3 => (X * (C1*C3)) - C2*C3 define float @fmul_fsub_fmul_distribute2(float %x) { ; CHECK-LABEL: @fmul_fsub_fmul_distribute2( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast float [[X:%.*]], 3.000000e+01 ; CHECK-NEXT: [[T3:%.*]] = fadd fast float [[TMP1]], -1.000000e+01 ; CHECK-NEXT: ret float [[T3]] ; %t1 = fmul float %x, 6.0 %t2 = fsub float %t1, 2.0 %t3 = fmul fast float %t2, 5.0 ret float %t3 } define float @fmul_fsub_fmul_distribute2_extra_use(float %x) { ; CHECK-LABEL: @fmul_fsub_fmul_distribute2_extra_use( ; CHECK-NEXT: [[T1:%.*]] = fmul float [[X:%.*]], 6.000000e+00 ; CHECK-NEXT: [[T2:%.*]] = fsub float 2.000000e+00, [[T1]] ; CHECK-NEXT: [[T3:%.*]] = fmul fast float [[T2]], 5.000000e+00 ; CHECK-NEXT: call void @use_f32(float [[T2]]) ; CHECK-NEXT: ret float [[T3]] ; %t1 = fmul float %x, 6.0 %t2 = fsub float 2.0, %t1 %t3 = fmul fast float %t2, 5.0 call void @use_f32(float %t2) ret float %t3 } ; "(X*Y) * X => (X*X) * Y" is disabled if "X*Y" has multiple uses define float @common_factor(float %x, float %y) { ; CHECK-LABEL: @common_factor( ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[MUL1:%.*]] = fmul fast float [[MUL]], [[X]] ; CHECK-NEXT: [[ADD:%.*]] = fadd float [[MUL1]], [[MUL]] ; CHECK-NEXT: ret float [[ADD]] ; %mul = fmul float %x, %y %mul1 = fmul fast float %mul, %x %add = fadd float %mul1, %mul ret float %add } define double @fmul_fdiv_factor_squared(double %x, double %y) { ; CHECK-LABEL: @fmul_fdiv_factor_squared( ; CHECK-NEXT: [[DIV:%.*]] = fdiv fast double [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[SQUARED:%.*]] = fmul fast double [[DIV]], [[DIV]] ; CHECK-NEXT: ret double [[SQUARED]] ; %div = fdiv fast double %x, %y %squared = fmul fast double %div, %div ret double %squared } define double @fmul_fdivs_factor_common_denominator(double %x, double %y, double %z) { ; CHECK-LABEL: @fmul_fdivs_factor_common_denominator( ; CHECK-NEXT: [[TMP1:%.*]] = fmul fast double [[Y:%.*]], [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = fmul fast double [[Z:%.*]], [[Z]] ; CHECK-NEXT: [[MUL:%.*]] = fdiv fast double [[TMP1]], [[TMP2]] ; CHECK-NEXT: ret double [[MUL]] ; %div1 = fdiv double %x, %z %div2 = fdiv double %y, %z %mul = fmul fast double %div1, %div2 ret double %mul } define double @fmul_fdivs_factor(double %x, double %y, double %z, double %w) { ; CHECK-LABEL: @fmul_fdivs_factor( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc double [[Z:%.*]], [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = fdiv reassoc double [[TMP1]], [[W:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fdiv reassoc double [[TMP2]], [[Y:%.*]] ; CHECK-NEXT: ret double [[MUL]] ; %div1 = fdiv double %x, %y %div2 = fdiv double %z, %w %mul = fmul reassoc double %div1, %div2 ret double %mul } define double @fmul_fdiv_factor(double %x, double %y, double %z) { ; CHECK-LABEL: @fmul_fdiv_factor( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc double [[X:%.*]], [[Z:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fdiv reassoc double [[TMP1]], [[Y:%.*]] ; CHECK-NEXT: ret double [[MUL]] ; %div = fdiv double %x, %y %mul = fmul reassoc double %div, %z ret double %mul } define double @fmul_fdiv_factor_constant1(double %x, double %y) { ; CHECK-LABEL: @fmul_fdiv_factor_constant1( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc double [[X:%.*]], 4.200000e+01 ; CHECK-NEXT: [[MUL:%.*]] = fdiv reassoc double [[TMP1]], [[Y:%.*]] ; CHECK-NEXT: ret double [[MUL]] ; %div = fdiv double %x, %y %mul = fmul reassoc double %div, 42.0 ret double %mul } define <2 x float> @fmul_fdiv_factor_constant2(<2 x float> %x, <2 x float> %y) { ; CHECK-LABEL: @fmul_fdiv_factor_constant2( ; CHECK-NEXT: [[TMP1:%.*]] = fmul reassoc <2 x float> [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[MUL:%.*]] = fdiv reassoc <2 x float> [[TMP1]], <float 4.200000e+01, float 1.200000e+01> ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %div = fdiv <2 x float> %x, <float 42.0, float 12.0> %mul = fmul reassoc <2 x float> %div, %y ret <2 x float> %mul } define float @fmul_fdiv_factor_extra_use(float %x, float %y) { ; CHECK-LABEL: @fmul_fdiv_factor_extra_use( ; CHECK-NEXT: [[DIV:%.*]] = fdiv float [[X:%.*]], 4.200000e+01 ; CHECK-NEXT: call void @use_f32(float [[DIV]]) ; CHECK-NEXT: [[MUL:%.*]] = fmul reassoc float [[DIV]], [[Y:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %div = fdiv float %x, 42.0 call void @use_f32(float %div) %mul = fmul reassoc float %div, %y ret float %mul } ; Avoid infinite looping by moving negation out of a constant expression. @g = external global {[2 x i8*]}, align 1 define double @fmul_negated_constant_expression(double %x) { ; CHECK-LABEL: @fmul_negated_constant_expression( ; CHECK-NEXT: [[R:%.*]] = fmul double [[X:%.*]], fneg (double bitcast (i64 ptrtoint (i8** getelementptr inbounds ({ [2 x i8*] }, { [2 x i8*] }* @g, i64 0, inrange i32 0, i64 2) to i64) to double)) ; CHECK-NEXT: ret double [[R]] ; %fsub = fsub double -0.000000e+00, bitcast (i64 ptrtoint (i8** getelementptr inbounds ({ [2 x i8*] }, { [2 x i8*] }* @g, i64 0, inrange i32 0, i64 2) to i64) to double) %r = fmul double %x, %fsub ret double %r } define float @negate_if_true(float %x, i1 %cond) { ; CHECK-LABEL: @negate_if_true( ; CHECK-NEXT: [[TMP1:%.*]] = fneg float [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = select i1 [[COND:%.*]], float [[TMP1]], float [[X]] ; CHECK-NEXT: ret float [[TMP2]] ; %sel = select i1 %cond, float -1.0, float 1.0 %r = fmul float %sel, %x ret float %r } define float @negate_if_false(float %x, i1 %cond) { ; CHECK-LABEL: @negate_if_false( ; CHECK-NEXT: [[TMP1:%.*]] = fneg arcp float [[X:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = select arcp i1 [[COND:%.*]], float [[X]], float [[TMP1]] ; CHECK-NEXT: ret float [[TMP2]] ; %sel = select i1 %cond, float 1.0, float -1.0 %r = fmul arcp float %sel, %x ret float %r } define <2 x double> @negate_if_true_commute(<2 x double> %px, i1 %cond) { ; CHECK-LABEL: @negate_if_true_commute( ; CHECK-NEXT: [[X:%.*]] = fdiv <2 x double> <double 4.200000e+01, double 4.200000e+01>, [[PX:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = fneg ninf <2 x double> [[X]] ; CHECK-NEXT: [[TMP2:%.*]] = select ninf i1 [[COND:%.*]], <2 x double> [[TMP1]], <2 x double> [[X]] ; CHECK-NEXT: ret <2 x double> [[TMP2]] ; %x = fdiv <2 x double> <double 42.0, double 42.0>, %px ; thwart complexity-based canonicalization %sel = select i1 %cond, <2 x double> <double -1.0, double -1.0>, <2 x double> <double 1.0, double 1.0> %r = fmul ninf <2 x double> %x, %sel ret <2 x double> %r } define <2 x double> @negate_if_false_commute(<2 x double> %px, <2 x i1> %cond) { ; CHECK-LABEL: @negate_if_false_commute( ; CHECK-NEXT: [[X:%.*]] = fdiv <2 x double> <double 4.200000e+01, double 5.100000e+00>, [[PX:%.*]] ; CHECK-NEXT: [[TMP1:%.*]] = fneg <2 x double> [[X]] ; CHECK-NEXT: [[TMP2:%.*]] = select <2 x i1> [[COND:%.*]], <2 x double> [[X]], <2 x double> [[TMP1]] ; CHECK-NEXT: ret <2 x double> [[TMP2]] ; %x = fdiv <2 x double> <double 42.0, double 5.1>, %px ; thwart complexity-based canonicalization %sel = select <2 x i1> %cond, <2 x double> <double 1.0, double 1.0>, <2 x double> <double -1.0, double -1.0> %r = fmul <2 x double> %x, %sel ret <2 x double> %r } ; Negative test define float @negate_if_true_extra_use(float %x, i1 %cond) { ; CHECK-LABEL: @negate_if_true_extra_use( ; CHECK-NEXT: [[SEL:%.*]] = select i1 [[COND:%.*]], float -1.000000e+00, float 1.000000e+00 ; CHECK-NEXT: call void @use_f32(float [[SEL]]) ; CHECK-NEXT: [[R:%.*]] = fmul float [[SEL]], [[X:%.*]] ; CHECK-NEXT: ret float [[R]] ; %sel = select i1 %cond, float -1.0, float 1.0 call void @use_f32(float %sel) %r = fmul float %sel, %x ret float %r } ; Negative test define <2 x double> @negate_if_true_wrong_constant(<2 x double> %px, i1 %cond) { ; CHECK-LABEL: @negate_if_true_wrong_constant( ; CHECK-NEXT: [[X:%.*]] = fdiv <2 x double> <double 4.200000e+01, double 4.200000e+01>, [[PX:%.*]] ; CHECK-NEXT: [[SEL:%.*]] = select i1 [[COND:%.*]], <2 x double> <double -1.000000e+00, double 0.000000e+00>, <2 x double> <double 1.000000e+00, double 1.000000e+00> ; CHECK-NEXT: [[R:%.*]] = fmul <2 x double> [[X]], [[SEL]] ; CHECK-NEXT: ret <2 x double> [[R]] ; %x = fdiv <2 x double> <double 42.0, double 42.0>, %px ; thwart complexity-based canonicalization %sel = select i1 %cond, <2 x double> <double -1.0, double 0.0>, <2 x double> <double 1.0, double 1.0> %r = fmul <2 x double> %x, %sel ret <2 x double> %r } ; X *fast (C ? 1.0 : 0.0) -> C ? X : 0.0 define float @fmul_select(float %x, i1 %c) { ; CHECK-LABEL: @fmul_select( ; CHECK-NEXT: [[MUL:%.*]] = select fast i1 [[C:%.*]], float [[X:%.*]], float 0.000000e+00 ; CHECK-NEXT: ret float [[MUL]] ; %sel = select i1 %c, float 1.0, float 0.0 %mul = fmul fast float %sel, %x ret float %mul } ; X *fast (C ? 1.0 : 0.0) -> C ? X : 0.0 define <2 x float> @fmul_select_vec(<2 x float> %x, i1 %c) { ; CHECK-LABEL: @fmul_select_vec( ; CHECK-NEXT: [[MUL:%.*]] = select fast i1 [[C:%.*]], <2 x float> [[X:%.*]], <2 x float> zeroinitializer ; CHECK-NEXT: ret <2 x float> [[MUL]] ; %sel = select i1 %c, <2 x float> <float 1.0, float 1.0>, <2 x float> zeroinitializer %mul = fmul fast <2 x float> %sel, %x ret <2 x float> %mul } ; Without fast math flags we can't optimize X * (C ? 1.0 : 0.0) -> C ? X : 0.0 define float @fmul_select_strict(float %x, i1 %c) { ; CHECK-LABEL: @fmul_select_strict( ; CHECK-NEXT: [[SEL:%.*]] = select i1 [[C:%.*]], float 1.000000e+00, float 0.000000e+00 ; CHECK-NEXT: [[MUL:%.*]] = fmul float [[SEL]], [[X:%.*]] ; CHECK-NEXT: ret float [[MUL]] ; %sel = select i1 %c, float 1.0, float 0.0 %mul = fmul float %sel, %x ret float %mul } ; sqrt(X) *fast (C ? sqrt(X) : 1.0) -> C ? X : sqrt(X) define double @fmul_sqrt_select(double %x, i1 %c) { ; CHECK-LABEL: @fmul_sqrt_select( ; CHECK-NEXT: [[SQR:%.*]] = call double @llvm.sqrt.f64(double [[X:%.*]]) ; CHECK-NEXT: [[MUL:%.*]] = select fast i1 [[C:%.*]], double [[X]], double [[SQR]] ; CHECK-NEXT: ret double [[MUL]] ; %sqr = call double @llvm.sqrt.f64(double %x) %sel = select i1 %c, double %sqr, double 1.0 %mul = fmul fast double %sqr, %sel ret double %mul } ; fastmath => z * splat(0) = splat(0), even for scalable vectors define <vscale x 2 x float> @mul_scalable_splat_zero(<vscale x 2 x float> %z) { ; CHECK-LABEL: @mul_scalable_splat_zero( ; CHECK-NEXT: ret <vscale x 2 x float> zeroinitializer ; %shuf = shufflevector <vscale x 2 x float> insertelement (<vscale x 2 x float> undef, float 0.0, i32 0), <vscale x 2 x float> undef, <vscale x 2 x i32> zeroinitializer %t3 = fmul fast <vscale x 2 x float> %shuf, %z ret <vscale x 2 x float> %t3 }