Compiler projects using llvm
//==-- AArch64ISelLowering.h - AArch64 DAG Lowering Interface ----*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that AArch64 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H
#define LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H

#include "AArch64.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Instruction.h"

namespace llvm {

namespace AArch64ISD {

// For predicated nodes where the result is a vector, the operation is
// controlled by a governing predicate and the inactive lanes are explicitly
// defined with a value, please stick the following naming convention:
//
//    _MERGE_OP<n>        The result value is a vector with inactive lanes equal
//                        to source operand OP<n>.
//
//    _MERGE_ZERO         The result value is a vector with inactive lanes
//                        actively zeroed.
//
//    _MERGE_PASSTHRU     The result value is a vector with inactive lanes equal
//                        to the last source operand which only purpose is being
//                        a passthru value.
//
// For other cases where no explicit action is needed to set the inactive lanes,
// or when the result is not a vector and it is needed or helpful to
// distinguish a node from similar unpredicated nodes, use:
//
//    _PRED
//
enum NodeType : unsigned {
  FIRST_NUMBER = ISD::BUILTIN_OP_END,
  WrapperLarge, // 4-instruction MOVZ/MOVK sequence for 64-bit addresses.
  CALL,         // Function call.

  // Pseudo for a OBJC call that gets emitted together with a special `mov
  // x29, x29` marker instruction.
  CALL_RVMARKER,

  CALL_BTI, // Function call followed by a BTI instruction.

  // Produces the full sequence of instructions for getting the thread pointer
  // offset of a variable into X0, using the TLSDesc model.
  TLSDESC_CALLSEQ,
  ADRP,     // Page address of a TargetGlobalAddress operand.
  ADR,      // ADR
  ADDlow,   // Add the low 12 bits of a TargetGlobalAddress operand.
  LOADgot,  // Load from automatically generated descriptor (e.g. Global
            // Offset Table, TLS record).
  RET_FLAG, // Return with a flag operand. Operand 0 is the chain operand.
  BRCOND,   // Conditional branch instruction; "b.cond".
  CSEL,
  CSINV, // Conditional select invert.
  CSNEG, // Conditional select negate.
  CSINC, // Conditional select increment.

  // Pointer to the thread's local storage area. Materialised from TPIDR_EL0 on
  // ELF.
  THREAD_POINTER,
  ADC,
  SBC, // adc, sbc instructions

  // Predicated instructions where inactive lanes produce undefined results.
  ABDS_PRED,
  ABDU_PRED,
  FADD_PRED,
  FDIV_PRED,
  FMA_PRED,
  FMAX_PRED,
  FMAXNM_PRED,
  FMIN_PRED,
  FMINNM_PRED,
  FMUL_PRED,
  FSUB_PRED,
  MUL_PRED,
  MULHS_PRED,
  MULHU_PRED,
  SDIV_PRED,
  SHL_PRED,
  SMAX_PRED,
  SMIN_PRED,
  SRA_PRED,
  SRL_PRED,
  UDIV_PRED,
  UMAX_PRED,
  UMIN_PRED,

  // Unpredicated vector instructions
  BIC,

  SRAD_MERGE_OP1,

  // Predicated instructions with the result of inactive lanes provided by the
  // last operand.
  FABS_MERGE_PASSTHRU,
  FCEIL_MERGE_PASSTHRU,
  FFLOOR_MERGE_PASSTHRU,
  FNEARBYINT_MERGE_PASSTHRU,
  FNEG_MERGE_PASSTHRU,
  FRECPX_MERGE_PASSTHRU,
  FRINT_MERGE_PASSTHRU,
  FROUND_MERGE_PASSTHRU,
  FROUNDEVEN_MERGE_PASSTHRU,
  FSQRT_MERGE_PASSTHRU,
  FTRUNC_MERGE_PASSTHRU,
  FP_ROUND_MERGE_PASSTHRU,
  FP_EXTEND_MERGE_PASSTHRU,
  UINT_TO_FP_MERGE_PASSTHRU,
  SINT_TO_FP_MERGE_PASSTHRU,
  FCVTZU_MERGE_PASSTHRU,
  FCVTZS_MERGE_PASSTHRU,
  SIGN_EXTEND_INREG_MERGE_PASSTHRU,
  ZERO_EXTEND_INREG_MERGE_PASSTHRU,
  ABS_MERGE_PASSTHRU,
  NEG_MERGE_PASSTHRU,

  SETCC_MERGE_ZERO,

  // Arithmetic instructions which write flags.
  ADDS,
  SUBS,
  ADCS,
  SBCS,
  ANDS,

  // Conditional compares. Operands: left,right,falsecc,cc,flags
  CCMP,
  CCMN,
  FCCMP,

  // Floating point comparison
  FCMP,

  // Scalar extract
  EXTR,

  // Scalar-to-vector duplication
  DUP,
  DUPLANE8,
  DUPLANE16,
  DUPLANE32,
  DUPLANE64,
  DUPLANE128,

  // Vector immedate moves
  MOVI,
  MOVIshift,
  MOVIedit,
  MOVImsl,
  FMOV,
  MVNIshift,
  MVNImsl,

  // Vector immediate ops
  BICi,
  ORRi,

  // Vector bitwise select: similar to ISD::VSELECT but not all bits within an
  // element must be identical.
  BSP,

  // Vector shuffles
  ZIP1,
  ZIP2,
  UZP1,
  UZP2,
  TRN1,
  TRN2,
  REV16,
  REV32,
  REV64,
  EXT,
  SPLICE,

  // Vector shift by scalar
  VSHL,
  VLSHR,
  VASHR,

  // Vector shift by scalar (again)
  SQSHL_I,
  UQSHL_I,
  SQSHLU_I,
  SRSHR_I,
  URSHR_I,

  // Vector shift by constant and insert
  VSLI,
  VSRI,

  // Vector comparisons
  CMEQ,
  CMGE,
  CMGT,
  CMHI,
  CMHS,
  FCMEQ,
  FCMGE,
  FCMGT,

  // Vector zero comparisons
  CMEQz,
  CMGEz,
  CMGTz,
  CMLEz,
  CMLTz,
  FCMEQz,
  FCMGEz,
  FCMGTz,
  FCMLEz,
  FCMLTz,

  // Vector across-lanes addition
  // Only the lower result lane is defined.
  SADDV,
  UADDV,

  // Add Pairwise of two vectors
  ADDP,
  // Add Long Pairwise
  SADDLP,
  UADDLP,

  // udot/sdot instructions
  UDOT,
  SDOT,

  // Vector across-lanes min/max
  // Only the lower result lane is defined.
  SMINV,
  UMINV,
  SMAXV,
  UMAXV,

  SADDV_PRED,
  UADDV_PRED,
  SMAXV_PRED,
  UMAXV_PRED,
  SMINV_PRED,
  UMINV_PRED,
  ORV_PRED,
  EORV_PRED,
  ANDV_PRED,

  // Vector bitwise insertion
  BIT,

  // Compare-and-branch
  CBZ,
  CBNZ,
  TBZ,
  TBNZ,

  // Tail calls
  TC_RETURN,

  // Custom prefetch handling
  PREFETCH,

  // {s|u}int to FP within a FP register.
  SITOF,
  UITOF,

  /// Natural vector cast. ISD::BITCAST is not natural in the big-endian
  /// world w.r.t vectors; which causes additional REV instructions to be
  /// generated to compensate for the byte-swapping. But sometimes we do
  /// need to re-interpret the data in SIMD vector registers in big-endian
  /// mode without emitting such REV instructions.
  NVCAST,

  MRS, // MRS, also sets the flags via a glue.

  SMULL,
  UMULL,

  // Reciprocal estimates and steps.
  FRECPE,
  FRECPS,
  FRSQRTE,
  FRSQRTS,

  SUNPKHI,
  SUNPKLO,
  UUNPKHI,
  UUNPKLO,

  CLASTA_N,
  CLASTB_N,
  LASTA,
  LASTB,
  TBL,

  // Floating-point reductions.
  FADDA_PRED,
  FADDV_PRED,
  FMAXV_PRED,
  FMAXNMV_PRED,
  FMINV_PRED,
  FMINNMV_PRED,

  INSR,
  PTEST,
  PTRUE,

  BITREVERSE_MERGE_PASSTHRU,
  BSWAP_MERGE_PASSTHRU,
  REVH_MERGE_PASSTHRU,
  REVW_MERGE_PASSTHRU,
  CTLZ_MERGE_PASSTHRU,
  CTPOP_MERGE_PASSTHRU,
  DUP_MERGE_PASSTHRU,
  INDEX_VECTOR,

  // Cast between vectors of the same element type but differ in length.
  REINTERPRET_CAST,

  // Nodes to build an LD64B / ST64B 64-bit quantity out of i64, and vice versa
  LS64_BUILD,
  LS64_EXTRACT,

  LD1_MERGE_ZERO,
  LD1S_MERGE_ZERO,
  LDNF1_MERGE_ZERO,
  LDNF1S_MERGE_ZERO,
  LDFF1_MERGE_ZERO,
  LDFF1S_MERGE_ZERO,
  LD1RQ_MERGE_ZERO,
  LD1RO_MERGE_ZERO,

  // Structured loads.
  SVE_LD2_MERGE_ZERO,
  SVE_LD3_MERGE_ZERO,
  SVE_LD4_MERGE_ZERO,

  // Unsigned gather loads.
  GLD1_MERGE_ZERO,
  GLD1_SCALED_MERGE_ZERO,
  GLD1_UXTW_MERGE_ZERO,
  GLD1_SXTW_MERGE_ZERO,
  GLD1_UXTW_SCALED_MERGE_ZERO,
  GLD1_SXTW_SCALED_MERGE_ZERO,
  GLD1_IMM_MERGE_ZERO,

  // Signed gather loads
  GLD1S_MERGE_ZERO,
  GLD1S_SCALED_MERGE_ZERO,
  GLD1S_UXTW_MERGE_ZERO,
  GLD1S_SXTW_MERGE_ZERO,
  GLD1S_UXTW_SCALED_MERGE_ZERO,
  GLD1S_SXTW_SCALED_MERGE_ZERO,
  GLD1S_IMM_MERGE_ZERO,

  // Unsigned gather loads.
  GLDFF1_MERGE_ZERO,
  GLDFF1_SCALED_MERGE_ZERO,
  GLDFF1_UXTW_MERGE_ZERO,
  GLDFF1_SXTW_MERGE_ZERO,
  GLDFF1_UXTW_SCALED_MERGE_ZERO,
  GLDFF1_SXTW_SCALED_MERGE_ZERO,
  GLDFF1_IMM_MERGE_ZERO,

  // Signed gather loads.
  GLDFF1S_MERGE_ZERO,
  GLDFF1S_SCALED_MERGE_ZERO,
  GLDFF1S_UXTW_MERGE_ZERO,
  GLDFF1S_SXTW_MERGE_ZERO,
  GLDFF1S_UXTW_SCALED_MERGE_ZERO,
  GLDFF1S_SXTW_SCALED_MERGE_ZERO,
  GLDFF1S_IMM_MERGE_ZERO,

  // Non-temporal gather loads
  GLDNT1_MERGE_ZERO,
  GLDNT1_INDEX_MERGE_ZERO,
  GLDNT1S_MERGE_ZERO,

  // Contiguous masked store.
  ST1_PRED,

  // Scatter store
  SST1_PRED,
  SST1_SCALED_PRED,
  SST1_UXTW_PRED,
  SST1_SXTW_PRED,
  SST1_UXTW_SCALED_PRED,
  SST1_SXTW_SCALED_PRED,
  SST1_IMM_PRED,

  // Non-temporal scatter store
  SSTNT1_PRED,
  SSTNT1_INDEX_PRED,

  // SME
  RDSVL,
  REVD_MERGE_PASSTHRU,

  // Asserts that a function argument (i32) is zero-extended to i8 by
  // the caller
  ASSERT_ZEXT_BOOL,

  // Strict (exception-raising) floating point comparison
  STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
  STRICT_FCMPE,

  // NEON Load/Store with post-increment base updates
  LD2post = ISD::FIRST_TARGET_MEMORY_OPCODE,
  LD3post,
  LD4post,
  ST2post,
  ST3post,
  ST4post,
  LD1x2post,
  LD1x3post,
  LD1x4post,
  ST1x2post,
  ST1x3post,
  ST1x4post,
  LD1DUPpost,
  LD2DUPpost,
  LD3DUPpost,
  LD4DUPpost,
  LD1LANEpost,
  LD2LANEpost,
  LD3LANEpost,
  LD4LANEpost,
  ST2LANEpost,
  ST3LANEpost,
  ST4LANEpost,

  STG,
  STZG,
  ST2G,
  STZ2G,

  LDP,
  STP,
  STNP,

  // Memory Operations
  MOPS_MEMSET,
  MOPS_MEMSET_TAGGING,
  MOPS_MEMCOPY,
  MOPS_MEMMOVE,
};

} // end namespace AArch64ISD

namespace AArch64 {
/// Possible values of current rounding mode, which is specified in bits
/// 23:22 of FPCR.
enum Rounding {
  RN = 0,    // Round to Nearest
  RP = 1,    // Round towards Plus infinity
  RM = 2,    // Round towards Minus infinity
  RZ = 3,    // Round towards Zero
  rmMask = 3 // Bit mask selecting rounding mode
};

// Bit position of rounding mode bits in FPCR.
const unsigned RoundingBitsPos = 22;
} // namespace AArch64

class AArch64Subtarget;

class AArch64TargetLowering : public TargetLowering {
public:
  explicit AArch64TargetLowering(const TargetMachine &TM,
                                 const AArch64Subtarget &STI);

  /// Control the following reassociation of operands: (op (op x, c1), y) -> (op
  /// (op x, y), c1) where N0 is (op x, c1) and N1 is y.
  bool isReassocProfitable(SelectionDAG &DAG, SDValue N0,
                           SDValue N1) const override;

  /// Selects the correct CCAssignFn for a given CallingConvention value.
  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const;

  /// Selects the correct CCAssignFn for a given CallingConvention value.
  CCAssignFn *CCAssignFnForReturn(CallingConv::ID CC) const;

  /// Determine which of the bits specified in Mask are known to be either zero
  /// or one and return them in the KnownZero/KnownOne bitsets.
  void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known,
                                     const APInt &DemandedElts,
                                     const SelectionDAG &DAG,
                                     unsigned Depth = 0) const override;

  MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const override {
    // Returning i64 unconditionally here (i.e. even for ILP32) means that the
    // *DAG* representation of pointers will always be 64-bits. They will be
    // truncated and extended when transferred to memory, but the 64-bit DAG
    // allows us to use AArch64's addressing modes much more easily.
    return MVT::getIntegerVT(64);
  }

  bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
                                    const APInt &DemandedElts,
                                    TargetLoweringOpt &TLO) const override;

  MVT getScalarShiftAmountTy(const DataLayout &DL, EVT) const override;

  /// Returns true if the target allows unaligned memory accesses of the
  /// specified type.
  bool allowsMisalignedMemoryAccesses(
      EVT VT, unsigned AddrSpace = 0, Align Alignment = Align(1),
      MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
      bool *Fast = nullptr) const override;
  /// LLT variant.
  bool allowsMisalignedMemoryAccesses(LLT Ty, unsigned AddrSpace,
                                      Align Alignment,
                                      MachineMemOperand::Flags Flags,
                                      bool *Fast = nullptr) const override;

  /// Provide custom lowering hooks for some operations.
  SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;

  const char *getTargetNodeName(unsigned Opcode) const override;

  SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

  /// This method returns a target specific FastISel object, or null if the
  /// target does not support "fast" ISel.
  FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                           const TargetLibraryInfo *libInfo) const override;

  bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;

  bool isFPImmLegal(const APFloat &Imm, EVT VT,
                    bool ForCodeSize) const override;

  /// Return true if the given shuffle mask can be codegen'd directly, or if it
  /// should be stack expanded.
  bool isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const override;

  /// Similar to isShuffleMaskLegal. Return true is the given 'select with zero'
  /// shuffle mask can be codegen'd directly.
  bool isVectorClearMaskLegal(ArrayRef<int> M, EVT VT) const override;

  /// Return the ISD::SETCC ValueType.
  EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
                         EVT VT) const override;

  SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const;

  MachineBasicBlock *EmitF128CSEL(MachineInstr &MI,
                                  MachineBasicBlock *BB) const;

  MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

  MachineBasicBlock *EmitTileLoad(unsigned Opc, unsigned BaseReg,
                                  MachineInstr &MI,
                                  MachineBasicBlock *BB) const;
  MachineBasicBlock *EmitFill(MachineInstr &MI, MachineBasicBlock *BB) const;
  MachineBasicBlock *EmitMopa(unsigned Opc, unsigned BaseReg, MachineInstr &MI,
                              MachineBasicBlock *BB) const;
  MachineBasicBlock *EmitInsertVectorToTile(unsigned Opc, unsigned BaseReg,
                                            MachineInstr &MI,
                                            MachineBasicBlock *BB) const;
  MachineBasicBlock *EmitZero(MachineInstr &MI, MachineBasicBlock *BB) const;
  MachineBasicBlock *EmitAddVectorToTile(unsigned Opc, unsigned BaseReg,
                                         MachineInstr &MI,
                                         MachineBasicBlock *BB) const;

  MachineBasicBlock *
  EmitInstrWithCustomInserter(MachineInstr &MI,
                              MachineBasicBlock *MBB) const override;

  bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
                          MachineFunction &MF,
                          unsigned Intrinsic) const override;

  bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
                             EVT NewVT) const override;

  bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
  bool isTruncateFree(EVT VT1, EVT VT2) const override;

  bool isProfitableToHoist(Instruction *I) const override;

  bool isZExtFree(Type *Ty1, Type *Ty2) const override;
  bool isZExtFree(EVT VT1, EVT VT2) const override;
  bool isZExtFree(SDValue Val, EVT VT2) const override;

  bool shouldSinkOperands(Instruction *I,
                          SmallVectorImpl<Use *> &Ops) const override;

  bool hasPairedLoad(EVT LoadedType, Align &RequiredAligment) const override;

  unsigned getMaxSupportedInterleaveFactor() const override { return 4; }

  bool lowerInterleavedLoad(LoadInst *LI,
                            ArrayRef<ShuffleVectorInst *> Shuffles,
                            ArrayRef<unsigned> Indices,
                            unsigned Factor) const override;
  bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
                             unsigned Factor) const override;

  bool isLegalAddImmediate(int64_t) const override;
  bool isLegalICmpImmediate(int64_t) const override;

  bool isMulAddWithConstProfitable(SDValue AddNode,
                                   SDValue ConstNode) const override;

  bool shouldConsiderGEPOffsetSplit() const override;

  EVT getOptimalMemOpType(const MemOp &Op,
                          const AttributeList &FuncAttributes) const override;

  LLT getOptimalMemOpLLT(const MemOp &Op,
                         const AttributeList &FuncAttributes) const override;

  /// Return true if the addressing mode represented by AM is legal for this
  /// target, for a load/store of the specified type.
  bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
                             unsigned AS,
                             Instruction *I = nullptr) const override;

  /// Return the cost of the scaling factor used in the addressing
  /// mode represented by AM for this target, for a load/store
  /// of the specified type.
  /// If the AM is supported, the return value must be >= 0.
  /// If the AM is not supported, it returns a negative value.
  InstructionCost getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
                                       Type *Ty, unsigned AS) const override;

  /// Return true if an FMA operation is faster than a pair of fmul and fadd
  /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
  /// returns true, otherwise fmuladd is expanded to fmul + fadd.
  bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
                                  EVT VT) const override;
  bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;

  bool generateFMAsInMachineCombiner(EVT VT,
                                     CodeGenOpt::Level OptLevel) const override;

  const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;

  /// Returns false if N is a bit extraction pattern of (X >> C) & Mask.
  bool isDesirableToCommuteWithShift(const SDNode *N,
                                     CombineLevel Level) const override;

  /// Returns false if N is a bit extraction pattern of (X >> C) & Mask.
  bool isDesirableToCommuteXorWithShift(const SDNode *N) const override;

  /// Return true if it is profitable to fold a pair of shifts into a mask.
  bool shouldFoldConstantShiftPairToMask(const SDNode *N,
                                         CombineLevel Level) const override;

  /// Returns true if it is beneficial to convert a load of a constant
  /// to just the constant itself.
  bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                         Type *Ty) const override;

  /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
  /// with this index.
  bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
                               unsigned Index) const override;

  bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
                            bool MathUsed) const override {
    // Using overflow ops for overflow checks only should beneficial on
    // AArch64.
    return TargetLowering::shouldFormOverflowOp(Opcode, VT, true);
  }

  Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr,
                        AtomicOrdering Ord) const override;
  Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr,
                              AtomicOrdering Ord) const override;

  void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const override;

  bool isOpSuitableForLDPSTP(const Instruction *I) const;
  bool shouldInsertFencesForAtomic(const Instruction *I) const override;

  TargetLoweringBase::AtomicExpansionKind
  shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
  TargetLoweringBase::AtomicExpansionKind
  shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
  TargetLoweringBase::AtomicExpansionKind
  shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;

  TargetLoweringBase::AtomicExpansionKind
  shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;

  bool useLoadStackGuardNode() const override;
  TargetLoweringBase::LegalizeTypeAction
  getPreferredVectorAction(MVT VT) const override;

  /// If the target has a standard location for the stack protector cookie,
  /// returns the address of that location. Otherwise, returns nullptr.
  Value *getIRStackGuard(IRBuilderBase &IRB) const override;

  void insertSSPDeclarations(Module &M) const override;
  Value *getSDagStackGuard(const Module &M) const override;
  Function *getSSPStackGuardCheck(const Module &M) const override;

  /// If the target has a standard location for the unsafe stack pointer,
  /// returns the address of that location. Otherwise, returns nullptr.
  Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const override;

  /// If a physical register, this returns the register that receives the
  /// exception address on entry to an EH pad.
  Register
  getExceptionPointerRegister(const Constant *PersonalityFn) const override {
    // FIXME: This is a guess. Has this been defined yet?
    return AArch64::X0;
  }

  /// If a physical register, this returns the register that receives the
  /// exception typeid on entry to a landing pad.
  Register
  getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
    // FIXME: This is a guess. Has this been defined yet?
    return AArch64::X1;
  }

  bool isIntDivCheap(EVT VT, AttributeList Attr) const override;

  bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
                        const MachineFunction &MF) const override {
    // Do not merge to float value size (128 bytes) if no implicit
    // float attribute is set.

    bool NoFloat = MF.getFunction().hasFnAttribute(Attribute::NoImplicitFloat);

    if (NoFloat)
      return (MemVT.getSizeInBits() <= 64);
    return true;
  }

  bool isCheapToSpeculateCttz() const override {
    return true;
  }

  bool isCheapToSpeculateCtlz() const override {
    return true;
  }

  bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;

  bool hasAndNotCompare(SDValue V) const override {
    // We can use bics for any scalar.
    return V.getValueType().isScalarInteger();
  }

  bool hasAndNot(SDValue Y) const override {
    EVT VT = Y.getValueType();

    if (!VT.isVector())
      return hasAndNotCompare(Y);

    TypeSize TS = VT.getSizeInBits();
    // TODO: We should be able to use bic/bif too for SVE.
    return !TS.isScalable() && TS.getFixedValue() >= 64; // vector 'bic'
  }

  bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
      SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
      unsigned OldShiftOpcode, unsigned NewShiftOpcode,
      SelectionDAG &DAG) const override;

  bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override;

  bool shouldTransformSignedTruncationCheck(EVT XVT,
                                            unsigned KeptBits) const override {
    // For vectors, we don't have a preference..
    if (XVT.isVector())
      return false;

    auto VTIsOk = [](EVT VT) -> bool {
      return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
             VT == MVT::i64;
    };

    // We are ok with KeptBitsVT being byte/word/dword, what SXT supports.
    // XVT will be larger than KeptBitsVT.
    MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
    return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
  }

  bool preferIncOfAddToSubOfNot(EVT VT) const override;

  bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override;

  bool hasBitPreservingFPLogic(EVT VT) const override {
    // FIXME: Is this always true? It should be true for vectors at least.
    return VT == MVT::f32 || VT == MVT::f64;
  }

  bool supportSplitCSR(MachineFunction *MF) const override {
    return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
           MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
  }
  void initializeSplitCSR(MachineBasicBlock *Entry) const override;
  void insertCopiesSplitCSR(
      MachineBasicBlock *Entry,
      const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;

  bool supportSwiftError() const override {
    return true;
  }

  /// Enable aggressive FMA fusion on targets that want it.
  bool enableAggressiveFMAFusion(EVT VT) const override;

  /// Returns the size of the platform's va_list object.
  unsigned getVaListSizeInBits(const DataLayout &DL) const override;

  /// Returns true if \p VecTy is a legal interleaved access type. This
  /// function checks the vector element type and the overall width of the
  /// vector.
  bool isLegalInterleavedAccessType(VectorType *VecTy, const DataLayout &DL,
                                    bool &UseScalable) const;

  /// Returns the number of interleaved accesses that will be generated when
  /// lowering accesses of the given type.
  unsigned getNumInterleavedAccesses(VectorType *VecTy, const DataLayout &DL,
                                     bool UseScalable) const;

  MachineMemOperand::Flags getTargetMMOFlags(
    const Instruction &I) const override;

  bool functionArgumentNeedsConsecutiveRegisters(
      Type *Ty, CallingConv::ID CallConv, bool isVarArg,
      const DataLayout &DL) const override;

  /// Used for exception handling on Win64.
  bool needsFixedCatchObjects() const override;

  bool fallBackToDAGISel(const Instruction &Inst) const override;

  /// SVE code generation for fixed length vectors does not custom lower
  /// BUILD_VECTOR. This makes BUILD_VECTOR legalisation a source of stores to
  /// merge. However, merging them creates a BUILD_VECTOR that is just as
  /// illegal as the original, thus leading to an infinite legalisation loop.
  /// NOTE: Once BUILD_VECTOR is legal or can be custom lowered for all legal
  /// vector types this override can be removed.
  bool mergeStoresAfterLegalization(EVT VT) const override;

  // If the platform/function should have a redzone, return the size in bytes.
  unsigned getRedZoneSize(const Function &F) const {
    if (F.hasFnAttribute(Attribute::NoRedZone))
      return 0;
    return 128;
  }

  bool isAllActivePredicate(SelectionDAG &DAG, SDValue N) const;
  EVT getPromotedVTForPredicate(EVT VT) const;

  EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty,
                             bool AllowUnknown = false) const override;

  bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const override;

private:
  /// Keep a pointer to the AArch64Subtarget around so that we can
  /// make the right decision when generating code for different targets.
  const AArch64Subtarget *Subtarget;

  bool isExtFreeImpl(const Instruction *Ext) const override;

  void addTypeForNEON(MVT VT);
  void addTypeForFixedLengthSVE(MVT VT);
  void addDRTypeForNEON(MVT VT);
  void addQRTypeForNEON(MVT VT);

  SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
                               bool isVarArg,
                               const SmallVectorImpl<ISD::InputArg> &Ins,
                               const SDLoc &DL, SelectionDAG &DAG,
                               SmallVectorImpl<SDValue> &InVals) const override;

  SDValue LowerCall(CallLoweringInfo & /*CLI*/,
                    SmallVectorImpl<SDValue> &InVals) const override;

  SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                          CallingConv::ID CallConv, bool isVarArg,
                          const SmallVectorImpl<CCValAssign> &RVLocs,
                          const SDLoc &DL, SelectionDAG &DAG,
                          SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
                          SDValue ThisVal) const;

  SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerStore128(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerABS(SDValue Op, SelectionDAG &DAG) const;

  SDValue LowerMGATHER(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerMSCATTER(SDValue Op, SelectionDAG &DAG) const;

  SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) const;

  SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;

  bool
  isEligibleForTailCallOptimization(const CallLoweringInfo &CLI) const;

  /// Finds the incoming stack arguments which overlap the given fixed stack
  /// object and incorporates their load into the current chain. This prevents
  /// an upcoming store from clobbering the stack argument before it's used.
  SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG,
                              MachineFrameInfo &MFI, int ClobberedFI) const;

  bool DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const;

  void saveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &DL,
                           SDValue &Chain) const;

  bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                      bool isVarArg,
                      const SmallVectorImpl<ISD::OutputArg> &Outs,
                      LLVMContext &Context) const override;

  SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                      const SmallVectorImpl<ISD::OutputArg> &Outs,
                      const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
                      SelectionDAG &DAG) const override;

  SDValue getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
                        unsigned Flag) const;
  SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG,
                        unsigned Flag) const;
  SDValue getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG,
                        unsigned Flag) const;
  SDValue getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
                        unsigned Flag) const;
  template <class NodeTy>
  SDValue getGOT(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
  template <class NodeTy>
  SDValue getAddrLarge(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
  template <class NodeTy>
  SDValue getAddr(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
  template <class NodeTy>
  SDValue getAddrTiny(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
  SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerDarwinGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerELFGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerELFTLSLocalExec(const GlobalValue *GV, SDValue ThreadBase,
                               const SDLoc &DL, SelectionDAG &DAG) const;
  SDValue LowerELFTLSDescCallSeq(SDValue SymAddr, const SDLoc &DL,
                                 SelectionDAG &DAG) const;
  SDValue LowerWindowsGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, SDValue RHS,
                         SDValue TVal, SDValue FVal, const SDLoc &dl,
                         SelectionDAG &DAG) const;
  SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerAAPCS_VASTART(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerDarwin_VASTART(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerWin64_VASTART(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerDUPQLane(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerToPredicatedOp(SDValue Op, SelectionDAG &DAG,
                              unsigned NewOp) const;
  SDValue LowerToScalableOp(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVECTOR_SPLICE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerDIV(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVectorSRA_SRL_SHL(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerCTPOP_PARITY(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerBitreverse(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerMinMax(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVectorFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVectorOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVSCALE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerATOMIC_LOAD_AND(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerWindowsDYNAMIC_STACKALLOC(SDValue Op, SDValue Chain,
                                         SDValue &Size,
                                         SelectionDAG &DAG) const;
  SDValue LowerSVEStructLoad(unsigned Intrinsic, ArrayRef<SDValue> LoadOps,
                             EVT VT, SelectionDAG &DAG, const SDLoc &DL) const;

  SDValue LowerFixedLengthVectorIntDivideToSVE(SDValue Op,
                                               SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVectorIntExtendToSVE(SDValue Op,
                                               SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVectorLoadToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVectorMLoadToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp, SelectionDAG &DAG) const;
  SDValue LowerPredReductionToSVE(SDValue ScalarOp, SelectionDAG &DAG) const;
  SDValue LowerReductionToSVE(unsigned Opcode, SDValue ScalarOp,
                              SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVectorSelectToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVectorSetccToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVectorStoreToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVectorMStoreToSVE(SDValue Op,
                                            SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVectorTruncateToSVE(SDValue Op,
                                              SelectionDAG &DAG) const;
  SDValue LowerFixedLengthExtractVectorElt(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthInsertVectorElt(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthBitcastToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthConcatVectorsToSVE(SDValue Op,
                                             SelectionDAG &DAG) const;
  SDValue LowerFixedLengthFPExtendToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthFPRoundToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthIntToFPToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthFPToIntToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVECTOR_SHUFFLEToSVE(SDValue Op,
                                              SelectionDAG &DAG) const;

  SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
                        SmallVectorImpl<SDNode *> &Created) const override;
  SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
                        SmallVectorImpl<SDNode *> &Created) const override;
  SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                          int &ExtraSteps, bool &UseOneConst,
                          bool Reciprocal) const override;
  SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                           int &ExtraSteps) const override;
  SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
                           const DenormalMode &Mode) const override;
  SDValue getSqrtResultForDenormInput(SDValue Operand,
                                      SelectionDAG &DAG) const override;
  unsigned combineRepeatedFPDivisors() const override;

  ConstraintType getConstraintType(StringRef Constraint) const override;
  Register getRegisterByName(const char* RegName, LLT VT,
                             const MachineFunction &MF) const override;

  /// Examine constraint string and operand type and determine a weight value.
  /// The operand object must already have been set up with the operand type.
  ConstraintWeight
  getSingleConstraintMatchWeight(AsmOperandInfo &info,
                                 const char *constraint) const override;

  std::pair<unsigned, const TargetRegisterClass *>
  getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                               StringRef Constraint, MVT VT) const override;

  const char *LowerXConstraint(EVT ConstraintVT) const override;

  void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
                                    std::vector<SDValue> &Ops,
                                    SelectionDAG &DAG) const override;

  unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
    if (ConstraintCode == "Q")
      return InlineAsm::Constraint_Q;
    // FIXME: clang has code for 'Ump', 'Utf', 'Usa', and 'Ush' but these are
    //        followed by llvm_unreachable so we'll leave them unimplemented in
    //        the backend for now.
    return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
  }

  bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const override;
  bool shouldRemoveExtendFromGSIndex(EVT IndexVT, EVT DataVT) const override;
  bool isVectorLoadExtDesirable(SDValue ExtVal) const override;
  bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
  bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
  bool getIndexedAddressParts(SDNode *Op, SDValue &Base, SDValue &Offset,
                              ISD::MemIndexedMode &AM, bool &IsInc,
                              SelectionDAG &DAG) const;
  bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset,
                                 ISD::MemIndexedMode &AM,
                                 SelectionDAG &DAG) const override;
  bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base,
                                  SDValue &Offset, ISD::MemIndexedMode &AM,
                                  SelectionDAG &DAG) const override;

  void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
                          SelectionDAG &DAG) const override;
  void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
                             SelectionDAG &DAG) const;
  void ReplaceExtractSubVectorResults(SDNode *N,
                                      SmallVectorImpl<SDValue> &Results,
                                      SelectionDAG &DAG) const;

  bool shouldNormalizeToSelectSequence(LLVMContext &, EVT) const override;

  void finalizeLowering(MachineFunction &MF) const override;

  bool shouldLocalize(const MachineInstr &MI,
                      const TargetTransformInfo *TTI) const override;

  bool SimplifyDemandedBitsForTargetNode(SDValue Op,
                                         const APInt &OriginalDemandedBits,
                                         const APInt &OriginalDemandedElts,
                                         KnownBits &Known,
                                         TargetLoweringOpt &TLO,
                                         unsigned Depth) const override;

  bool isTargetCanonicalConstantNode(SDValue Op) const override;

  // Normally SVE is only used for byte size vectors that do not fit within a
  // NEON vector. This changes when OverrideNEON is true, allowing SVE to be
  // used for 64bit and 128bit vectors as well.
  bool useSVEForFixedLengthVectorVT(EVT VT, bool OverrideNEON = false) const;

  // With the exception of data-predicate transitions, no instructions are
  // required to cast between legal scalable vector types. However:
  //  1. Packed and unpacked types have different bit lengths, meaning BITCAST
  //     is not universally useable.
  //  2. Most unpacked integer types are not legal and thus integer extends
  //     cannot be used to convert between unpacked and packed types.
  // These can make "bitcasting" a multiphase process. REINTERPRET_CAST is used
  // to transition between unpacked and packed types of the same element type,
  // with BITCAST used otherwise.
  // This function does not handle predicate bitcasts.
  SDValue getSVESafeBitCast(EVT VT, SDValue Op, SelectionDAG &DAG) const;

  bool isConstantUnsignedBitfieldExtractLegal(unsigned Opc, LLT Ty1,
                                              LLT Ty2) const override;
};

namespace AArch64 {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                         const TargetLibraryInfo *libInfo);
} // end namespace AArch64

} // end namespace llvm

#endif