; RUN: opt -disable-output "-passes=print<scalar-evolution>" < %s 2>&1 | FileCheck %s target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" target triple = "x86_64-unknown-linux-gnu" define void @f_sadd_0(i8* %a) { ; CHECK-LABEL: Classifying expressions for: @f_sadd_0 entry: br label %for.body for.cond.cleanup: ; preds = %cont ret void for.body: ; preds = %entry, %cont ; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ] ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body> U: [0,16) S: [0,16) %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ] %idxprom = sext i32 %i.04 to i64 %arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom store i8 0, i8* %arrayidx, align 1 %tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1) %tmp1 = extractvalue { i32, i1 } %tmp0, 1 br i1 %tmp1, label %trap, label %cont, !nosanitize !{} trap: ; preds = %for.body tail call void @llvm.trap() #2, !nosanitize !{} unreachable, !nosanitize !{} cont: ; preds = %for.body %tmp2 = extractvalue { i32, i1 } %tmp0, 0 %cmp = icmp slt i32 %tmp2, 16 br i1 %cmp, label %for.body, label %for.cond.cleanup ; CHECK: Loop %for.body: max backedge-taken count is 15 } define void @f_sadd_1(i8* %a) { ; CHECK-LABEL: Classifying expressions for: @f_sadd_1 entry: br label %for.body for.cond.cleanup: ; preds = %cont ret void for.body: ; preds = %entry, %cont ; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,16) S: [0,16) ; SCEV can prove <nsw> for the above induction variable; but it does ; not bother so before it sees the sext below since it is not a 100% ; obvious. %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ] %idxprom = sext i32 %i.04 to i64 %arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom store i8 0, i8* %arrayidx, align 1 %tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1) %tmp1 = extractvalue { i32, i1 } %tmp0, 1 br i1 %tmp1, label %trap, label %cont, !nosanitize !{} trap: ; preds = %for.body br label %cont cont: ; preds = %for.body %tmp2 = extractvalue { i32, i1 } %tmp0, 0 %cmp = icmp slt i32 %tmp2, 16 br i1 %cmp, label %for.body, label %for.cond.cleanup ; CHECK: Loop %for.body: max backedge-taken count is 15 } define void @f_sadd_2(i8* %a, i1* %c) { ; CHECK-LABEL: Classifying expressions for: @f_sadd_2 entry: br label %for.body for.cond.cleanup: ; preds = %cont ret void for.body: ; preds = %entry, %cont ; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ] ; CHECK-NEXT: --> {0,+,1}<%for.body> %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ] %idxprom = sext i32 %i.04 to i64 %arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom store i8 0, i8* %arrayidx, align 1 %tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1) %tmp1 = extractvalue { i32, i1 } %tmp0, 1 br i1 %tmp1, label %trap, label %cont, !nosanitize !{} trap: ; preds = %for.body br label %cont cont: ; preds = %for.body %tmp2 = extractvalue { i32, i1 } %tmp0, 0 %cond = load volatile i1, i1* %c br i1 %cond, label %for.body, label %for.cond.cleanup } define void @f_sadd_3(i8* %a, i1* %c) { ; CHECK-LABEL: Classifying expressions for: @f_sadd_3 entry: br label %for.body for.cond.cleanup: ; preds = %cont ret void for.body: ; preds = %entry, %cont ; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %for.body ] ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body> %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %for.body ] %idxprom = sext i32 %i.04 to i64 %arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom store i8 0, i8* %arrayidx, align 1 %tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1) %tmp1 = extractvalue { i32, i1 } %tmp0, 1 %tmp2 = extractvalue { i32, i1 } %tmp0, 0 br i1 %tmp1, label %trap, label %for.body, !nosanitize !{} trap: ; preds = %for.body tail call void @llvm.trap() #2, !nosanitize !{} unreachable, !nosanitize !{} } define void @f_sadd_4(i8* %a, i1* %c) { ; CHECK-LABEL: Classifying expressions for: @f_sadd_4 entry: br label %for.body for.cond.cleanup: ; preds = %cont ret void for.body: ; preds = %entry, %cont ; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %merge ] ; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body> %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %merge ] %idxprom = sext i32 %i.04 to i64 %arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom store i8 0, i8* %arrayidx, align 1 %tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1) %tmp1 = extractvalue { i32, i1 } %tmp0, 1 %tmp2 = extractvalue { i32, i1 } %tmp0, 0 br i1 %tmp1, label %notrap, label %merge notrap: br label %merge merge: %tmp3 = extractvalue { i32, i1 } %tmp0, 1 br i1 %tmp3, label %trap, label %for.body, !nosanitize !{} trap: ; preds = %for.body tail call void @llvm.trap() #2, !nosanitize !{} unreachable, !nosanitize !{} } define void @f_sadd_may_overflow(i8* %a, i1* %c) { ; CHECK-LABEL: Classifying expressions for: @f_sadd_may_overflow entry: br label %for.body for.cond.cleanup: ; preds = %cont ret void for.body: ; preds = %entry, %cont ; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp1, %cont ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: full-set S: full-set %i.04 = phi i32 [ 0, %entry ], [ %tmp1, %cont ] %idxprom = sext i32 %i.04 to i64 %arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom store i8 0, i8* %arrayidx, align 1 %tmp0 = tail call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %i.04, i32 1) %cond1 = load volatile i1, i1* %c br i1 %cond1, label %trap, label %cont, !nosanitize !{} trap: ; preds = %for.body tail call void @llvm.trap() #2, !nosanitize !{} unreachable, !nosanitize !{} cont: ; preds = %for.body %tmp1 = extractvalue { i32, i1 } %tmp0, 0 %cond = load volatile i1, i1* %c br i1 %cond, label %for.body, label %for.cond.cleanup } define void @f_uadd(i8* %a) { ; CHECK-LABEL: Classifying expressions for: @f_uadd entry: br label %for.body for.cond.cleanup: ; preds = %cont ret void for.body: ; preds = %entry, %cont ; CHECK: %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ] ; CHECK-NEXT: --> {0,+,1}<nuw><%for.body> U: [0,16) S: [0,16) %i.04 = phi i32 [ 0, %entry ], [ %tmp2, %cont ] %idxprom = sext i32 %i.04 to i64 %arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom store i8 0, i8* %arrayidx, align 1 %tmp0 = tail call { i32, i1 } @llvm.uadd.with.overflow.i32(i32 %i.04, i32 1) %tmp1 = extractvalue { i32, i1 } %tmp0, 1 br i1 %tmp1, label %trap, label %cont, !nosanitize !{} trap: ; preds = %for.body tail call void @llvm.trap(), !nosanitize !{} unreachable, !nosanitize !{} cont: ; preds = %for.body %tmp2 = extractvalue { i32, i1 } %tmp0, 0 %cmp = icmp slt i32 %tmp2, 16 br i1 %cmp, label %for.body, label %for.cond.cleanup ; CHECK: Loop %for.body: max backedge-taken count is 15 } define void @f_ssub(i8* nocapture %a) { ; CHECK-LABEL: Classifying expressions for: @f_ssub entry: br label %for.body for.cond.cleanup: ; preds = %cont ret void for.body: ; preds = %entry, %cont ; CHECK: %i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ] ; CHECK-NEXT: --> {15,+,-1}<%for.body> U: [0,16) S: [0,16) %i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ] %idxprom = sext i32 %i.04 to i64 %arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom store i8 0, i8* %arrayidx, align 1 %tmp0 = tail call { i32, i1 } @llvm.ssub.with.overflow.i32(i32 %i.04, i32 1) %tmp1 = extractvalue { i32, i1 } %tmp0, 1 br i1 %tmp1, label %trap, label %cont, !nosanitize !{} trap: ; preds = %for.body tail call void @llvm.trap(), !nosanitize !{} unreachable, !nosanitize !{} cont: ; preds = %for.body %tmp2 = extractvalue { i32, i1 } %tmp0, 0 %cmp = icmp sgt i32 %tmp2, -1 br i1 %cmp, label %for.body, label %for.cond.cleanup ; CHECK: Loop %for.body: max backedge-taken count is 15 } define void @f_usub(i8* nocapture %a) { ; CHECK-LABEL: Classifying expressions for: @f_usub entry: br label %for.body for.cond.cleanup: ; preds = %cont ret void for.body: ; preds = %entry, %cont ; CHECK: %i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ] ; CHECK-NEXT: --> {15,+,-1}<%for.body> U: [0,16) S: [0,16) %i.04 = phi i32 [ 15, %entry ], [ %tmp2, %cont ] %idxprom = sext i32 %i.04 to i64 %arrayidx = getelementptr inbounds i8, i8* %a, i64 %idxprom store i8 0, i8* %arrayidx, align 1 %tmp0 = tail call { i32, i1 } @llvm.usub.with.overflow.i32(i32 %i.04, i32 1) %tmp1 = extractvalue { i32, i1 } %tmp0, 1 br i1 %tmp1, label %trap, label %cont, !nosanitize !{} trap: ; preds = %for.body tail call void @llvm.trap(), !nosanitize !{} unreachable, !nosanitize !{} cont: ; preds = %for.body %tmp2 = extractvalue { i32, i1 } %tmp0, 0 %cmp = icmp sgt i32 %tmp2, -1 br i1 %cmp, label %for.body, label %for.cond.cleanup ; CHECK: Loop %for.body: max backedge-taken count is 15 } define i32 @f_smul(i32 %val_a, i32 %val_b) { ; CHECK-LABEL: Classifying expressions for: @f_smul %agg = tail call { i32, i1 } @llvm.smul.with.overflow.i32(i32 %val_a, i32 %val_b) ; CHECK: %mul = extractvalue { i32, i1 } %agg, 0 ; CHECK-NEXT: --> (%val_a * %val_b) U: full-set S: full-set %mul = extractvalue { i32, i1 } %agg, 0 ret i32 %mul } define i32 @f_umul(i32 %val_a, i32 %val_b) { ; CHECK-LABEL: Classifying expressions for: @f_umul %agg = tail call { i32, i1 } @llvm.umul.with.overflow.i32(i32 %val_a, i32 %val_b) ; CHECK: %mul = extractvalue { i32, i1 } %agg, 0 ; CHECK-NEXT: --> (%val_a * %val_b) U: full-set S: full-set %mul = extractvalue { i32, i1 } %agg, 0 ret i32 %mul } declare { i32, i1 } @llvm.sadd.with.overflow.i32(i32, i32) nounwind readnone declare { i32, i1 } @llvm.uadd.with.overflow.i32(i32, i32) nounwind readnone declare { i32, i1 } @llvm.ssub.with.overflow.i32(i32, i32) nounwind readnone declare { i32, i1 } @llvm.usub.with.overflow.i32(i32, i32) nounwind readnone declare { i32, i1 } @llvm.smul.with.overflow.i32(i32, i32) nounwind readnone declare { i32, i1 } @llvm.umul.with.overflow.i32(i32, i32) nounwind readnone declare void @llvm.trap() #2