//===- InstructionCost.h ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines an InstructionCost class that is used when calculating
/// the cost of an instruction, or a group of instructions. In addition to a
/// numeric value representing the cost the class also contains a state that
/// can be used to encode particular properties, such as a cost being invalid.
/// Operations on InstructionCost implement saturation arithmetic, so that
/// accumulating costs on large cost-values don't overflow.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_INSTRUCTIONCOST_H
#define LLVM_SUPPORT_INSTRUCTIONCOST_H
#include "llvm/ADT/Optional.h"
#include "llvm/Support/MathExtras.h"
#include <limits>
namespace llvm {
class raw_ostream;
class InstructionCost {
public:
using CostType = int64_t;
/// CostState describes the state of a cost.
enum CostState {
Valid, /// < The cost value represents a valid cost, even when the
/// cost-value is large.
Invalid /// < Invalid indicates there is no way to represent the cost as a
/// numeric value. This state exists to represent a possible issue,
/// e.g. if the cost-model knows the operation cannot be expanded
/// into a valid code-sequence by the code-generator. While some
/// passes may assert that the calculated cost must be valid, it is
/// up to individual passes how to interpret an Invalid cost. For
/// example, a transformation pass could choose not to perform a
/// transformation if the resulting cost would end up Invalid.
/// Because some passes may assert a cost is Valid, it is not
/// recommended to use Invalid costs to model 'Unknown'.
/// Note that Invalid is semantically different from a (very) high,
/// but valid cost, which intentionally indicates no issue, but
/// rather a strong preference not to select a certain operation.
};
private:
CostType Value = 0;
CostState State = Valid;
void propagateState(const InstructionCost &RHS) {
if (RHS.State == Invalid)
State = Invalid;
}
static CostType getMaxValue() { return std::numeric_limits<CostType>::max(); }
static CostType getMinValue() { return std::numeric_limits<CostType>::min(); }
public:
// A default constructed InstructionCost is a valid zero cost
InstructionCost() = default;
InstructionCost(CostState) = delete;
InstructionCost(CostType Val) : Value(Val), State(Valid) {}
static InstructionCost getMax() { return getMaxValue(); }
static InstructionCost getMin() { return getMinValue(); }
static InstructionCost getInvalid(CostType Val = 0) {
InstructionCost Tmp(Val);
Tmp.setInvalid();
return Tmp;
}
bool isValid() const { return State == Valid; }
void setValid() { State = Valid; }
void setInvalid() { State = Invalid; }
CostState getState() const { return State; }
/// This function is intended to be used as sparingly as possible, since the
/// class provides the full range of operator support required for arithmetic
/// and comparisons.
Optional<CostType> getValue() const {
if (isValid())
return Value;
return None;
}
/// For all of the arithmetic operators provided here any invalid state is
/// perpetuated and cannot be removed. Once a cost becomes invalid it stays
/// invalid, and it also inherits any invalid state from the RHS.
/// Arithmetic work on the actual values is implemented with saturation,
/// to avoid overflow when using more extreme cost values.
InstructionCost &operator+=(const InstructionCost &RHS) {
propagateState(RHS);
// Saturating addition.
InstructionCost::CostType Result;
if (AddOverflow(Value, RHS.Value, Result))
Result = RHS.Value > 0 ? getMaxValue() : getMinValue();
Value = Result;
return *this;
}
InstructionCost &operator+=(const CostType RHS) {
InstructionCost RHS2(RHS);
*this += RHS2;
return *this;
}
InstructionCost &operator-=(const InstructionCost &RHS) {
propagateState(RHS);
// Saturating subtract.
InstructionCost::CostType Result;
if (SubOverflow(Value, RHS.Value, Result))
Result = RHS.Value > 0 ? getMinValue() : getMaxValue();
Value = Result;
return *this;
}
InstructionCost &operator-=(const CostType RHS) {
InstructionCost RHS2(RHS);
*this -= RHS2;
return *this;
}
InstructionCost &operator*=(const InstructionCost &RHS) {
propagateState(RHS);
// Saturating multiply.
InstructionCost::CostType Result;
if (MulOverflow(Value, RHS.Value, Result)) {
if ((Value > 0 && RHS.Value > 0) || (Value < 0 && RHS.Value < 0))
Result = getMaxValue();
else
Result = getMinValue();
}
Value = Result;
return *this;
}
InstructionCost &operator*=(const CostType RHS) {
InstructionCost RHS2(RHS);
*this *= RHS2;
return *this;
}
InstructionCost &operator/=(const InstructionCost &RHS) {
propagateState(RHS);
Value /= RHS.Value;
return *this;
}
InstructionCost &operator/=(const CostType RHS) {
InstructionCost RHS2(RHS);
*this /= RHS2;
return *this;
}
InstructionCost &operator++() {
*this += 1;
return *this;
}
InstructionCost operator++(int) {
InstructionCost Copy = *this;
++*this;
return Copy;
}
InstructionCost &operator--() {
*this -= 1;
return *this;
}
InstructionCost operator--(int) {
InstructionCost Copy = *this;
--*this;
return Copy;
}
/// For the comparison operators we have chosen to use lexicographical
/// ordering where valid costs are always considered to be less than invalid
/// costs. This avoids having to add asserts to the comparison operators that
/// the states are valid and users can test for validity of the cost
/// explicitly.
bool operator<(const InstructionCost &RHS) const {
if (State != RHS.State)
return State < RHS.State;
return Value < RHS.Value;
}
// Implement in terms of operator< to ensure that the two comparisons stay in
// sync
bool operator==(const InstructionCost &RHS) const {
return !(*this < RHS) && !(RHS < *this);
}
bool operator!=(const InstructionCost &RHS) const { return !(*this == RHS); }
bool operator==(const CostType RHS) const {
InstructionCost RHS2(RHS);
return *this == RHS2;
}
bool operator!=(const CostType RHS) const { return !(*this == RHS); }
bool operator>(const InstructionCost &RHS) const { return RHS < *this; }
bool operator<=(const InstructionCost &RHS) const { return !(RHS < *this); }
bool operator>=(const InstructionCost &RHS) const { return !(*this < RHS); }
bool operator<(const CostType RHS) const {
InstructionCost RHS2(RHS);
return *this < RHS2;
}
bool operator>(const CostType RHS) const {
InstructionCost RHS2(RHS);
return *this > RHS2;
}
bool operator<=(const CostType RHS) const {
InstructionCost RHS2(RHS);
return *this <= RHS2;
}
bool operator>=(const CostType RHS) const {
InstructionCost RHS2(RHS);
return *this >= RHS2;
}
void print(raw_ostream &OS) const;
template <class Function>
auto map(const Function &F) const -> InstructionCost {
if (isValid())
return F(*getValue());
return getInvalid();
}
};
inline InstructionCost operator+(const InstructionCost &LHS,
const InstructionCost &RHS) {
InstructionCost LHS2(LHS);
LHS2 += RHS;
return LHS2;
}
inline InstructionCost operator-(const InstructionCost &LHS,
const InstructionCost &RHS) {
InstructionCost LHS2(LHS);
LHS2 -= RHS;
return LHS2;
}
inline InstructionCost operator*(const InstructionCost &LHS,
const InstructionCost &RHS) {
InstructionCost LHS2(LHS);
LHS2 *= RHS;
return LHS2;
}
inline InstructionCost operator/(const InstructionCost &LHS,
const InstructionCost &RHS) {
InstructionCost LHS2(LHS);
LHS2 /= RHS;
return LHS2;
}
inline raw_ostream &operator<<(raw_ostream &OS, const InstructionCost &V) {
V.print(OS);
return OS;
}
} // namespace llvm
#endif