; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc < %s -mtriple=i686-unknown-unknown -mattr=+sse2 | FileCheck %s --check-prefix=X86 ; RUN: llc < %s -mtriple=x86_64-unknown-unknown | FileCheck %s --check-prefix=X64 ; The easy case: a constant power-of-2 divisor. define i64 @const_pow_2(i64 %x) { ; X86-LABEL: const_pow_2: ; X86: # %bb.0: ; X86-NEXT: movl {{[0-9]+}}(%esp), %eax ; X86-NEXT: andl $31, %eax ; X86-NEXT: xorl %edx, %edx ; X86-NEXT: retl ; ; X64-LABEL: const_pow_2: ; X64: # %bb.0: ; X64-NEXT: movq %rdi, %rax ; X64-NEXT: andl $31, %eax ; X64-NEXT: retq %urem = urem i64 %x, 32 ret i64 %urem } ; A left-shifted power-of-2 divisor. Use a weird type for wider coverage. define i25 @shift_left_pow_2(i25 %x, i25 %y) { ; X86-LABEL: shift_left_pow_2: ; X86: # %bb.0: ; X86-NEXT: movzbl {{[0-9]+}}(%esp), %ecx ; X86-NEXT: movl $1, %eax ; X86-NEXT: shll %cl, %eax ; X86-NEXT: addl $33554431, %eax # imm = 0x1FFFFFF ; X86-NEXT: andl {{[0-9]+}}(%esp), %eax ; X86-NEXT: retl ; ; X64-LABEL: shift_left_pow_2: ; X64: # %bb.0: ; X64-NEXT: movl %esi, %ecx ; X64-NEXT: movl $1, %eax ; X64-NEXT: # kill: def $cl killed $cl killed $ecx ; X64-NEXT: shll %cl, %eax ; X64-NEXT: addl $33554431, %eax # imm = 0x1FFFFFF ; X64-NEXT: andl %edi, %eax ; X64-NEXT: retq %shl = shl i25 1, %y %urem = urem i25 %x, %shl ret i25 %urem } ; A logically right-shifted sign bit is a power-of-2 or UB. define i16 @shift_right_pow_2(i16 %x, i16 %y) { ; X86-LABEL: shift_right_pow_2: ; X86: # %bb.0: ; X86-NEXT: movzbl {{[0-9]+}}(%esp), %ecx ; X86-NEXT: movl $32768, %eax # imm = 0x8000 ; X86-NEXT: shrl %cl, %eax ; X86-NEXT: decl %eax ; X86-NEXT: andw {{[0-9]+}}(%esp), %ax ; X86-NEXT: # kill: def $ax killed $ax killed $eax ; X86-NEXT: retl ; ; X64-LABEL: shift_right_pow_2: ; X64: # %bb.0: ; X64-NEXT: movl %esi, %ecx ; X64-NEXT: movl $32768, %eax # imm = 0x8000 ; X64-NEXT: # kill: def $cl killed $cl killed $ecx ; X64-NEXT: shrl %cl, %eax ; X64-NEXT: decl %eax ; X64-NEXT: andl %edi, %eax ; X64-NEXT: # kill: def $ax killed $ax killed $eax ; X64-NEXT: retq %shr = lshr i16 -32768, %y %urem = urem i16 %x, %shr ret i16 %urem } ; FIXME: A zero divisor would be UB, so this could be reduced to an 'and' with 3. define i8 @and_pow_2(i8 %x, i8 %y) { ; X86-LABEL: and_pow_2: ; X86: # %bb.0: ; X86-NEXT: movzbl {{[0-9]+}}(%esp), %ecx ; X86-NEXT: andb $4, %cl ; X86-NEXT: movzbl {{[0-9]+}}(%esp), %eax ; X86-NEXT: divb %cl ; X86-NEXT: movzbl %ah, %eax ; X86-NEXT: # kill: def $al killed $al killed $eax ; X86-NEXT: retl ; ; X64-LABEL: and_pow_2: ; X64: # %bb.0: ; X64-NEXT: andb $4, %sil ; X64-NEXT: movzbl %dil, %eax ; X64-NEXT: divb %sil ; X64-NEXT: movzbl %ah, %eax ; X64-NEXT: # kill: def $al killed $al killed $eax ; X64-NEXT: retq %and = and i8 %y, 4 %urem = urem i8 %x, %and ret i8 %urem } ; A vector constant divisor should get the same treatment as a scalar. define <4 x i32> @vec_const_uniform_pow_2(<4 x i32> %x) { ; X86-LABEL: vec_const_uniform_pow_2: ; X86: # %bb.0: ; X86-NEXT: andps {{\.?LCPI[0-9]+_[0-9]+}}, %xmm0 ; X86-NEXT: retl ; ; X64-LABEL: vec_const_uniform_pow_2: ; X64: # %bb.0: ; X64-NEXT: andps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0 ; X64-NEXT: retq %urem = urem <4 x i32> %x, <i32 16, i32 16, i32 16, i32 16> ret <4 x i32> %urem } define <4 x i32> @vec_const_nonuniform_pow_2(<4 x i32> %x) { ; X86-LABEL: vec_const_nonuniform_pow_2: ; X86: # %bb.0: ; X86-NEXT: andps {{\.?LCPI[0-9]+_[0-9]+}}, %xmm0 ; X86-NEXT: retl ; ; X64-LABEL: vec_const_nonuniform_pow_2: ; X64: # %bb.0: ; X64-NEXT: andps {{\.?LCPI[0-9]+_[0-9]+}}(%rip), %xmm0 ; X64-NEXT: retq %urem = urem <4 x i32> %x, <i32 2, i32 4, i32 8, i32 16> ret <4 x i32> %urem }