def icosahedral(inputs):
layer1 = keras.layers.Dense(20, activation=tf.math.asinh)(inputs)
layer2 = keras.layers.Dense(20, activation=tf.math.asinh)(layer1)
layer3 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer1,layer2]))
layer4 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer1,layer2]))
layer5 = keras.layers.Dense(20, activation=keras.activations.relu)(keras.layers.concatenate([layer2,layer3]))
layer6 = keras.layers.Dense(20, activation=keras.activations.relu)(keras.layers.concatenate([layer2,layer4,layer5]))
layer7 = keras.layers.Dense(20, activation=keras.activations.relu)(keras.layers.concatenate([layer5,layer6]))
layer8 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer3,layer5,layer7]))
layer9 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer4,layer6,layer7]))
layer10 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer7,layer8,layer9]))
layer11 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer1,layer3,layer8,layer10]))
layer12 = keras.layers.Dense(20, activation=tf.math.asinh)(keras.layers.concatenate([layer1,layer4,layer9,layer10,layer11]))
return keras.layers.concatenate([layer11,layer12])